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Abstract
With the increasing prevalence ofmachine learning and large
language model (LLM) inference, heterogeneous computing
has become essential. Modern JVMs are embracing this tran-
sition through projects such as TornadoVM and Babylon,
which enable hardware acceleration on diverse hardware
resources, including GPUs and FPGAs. However, while per-
formance results are promising, developers currently face
a significant tooling gap: traditional profilers excel at CPU-
bound execution but become a “black box” when execution
transitions to accelerators, providing no visibility into device
memory management, execution patterns or cross-device
data movement. This gap leaves developers without a uni-
fied view of how their Java applications behave across the
heterogeneous computing stack.
In this paper, we present TornadoViz, a visual analytics

tool that leverages TornadoVM’s specialized bytecode system
to provide interactive analysis of heterogeneous execution
and object lifecycles in managed runtime systems. Unlike
existing tools, TornadoViz bridges the managed-native di-
vide by interpreting the bytecode stream that orchestrates
heterogeneous execution, hence connecting high-level ap-
plication logic with low-level hardware utilization patterns.
Our tool enables developers to visualize task dependencies,
track memory operations across devices, analyze bytecode
distribution patterns, and identify performance bottlenecks
through interactive dashboards.

CCS Concepts: • Software and its engineering→ Inte-
grated and visual development environments.
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1 Introduction
As computing systems continue to incorporate diverse hard-
ware accelerators such as GPUs, FPGAs, and specialized
processors, managed programming languages face the chal-
lenge of efficiently utilizing these heterogeneous resources
while maintaining the productivity and safety benefits their
runtime systems provide. Projects like TornadoVM [7, 9] and
Babylon [6] address this challenge by extending Java with
the capability to dynamically compile and execute code on
heterogeneous hardware devices transparently.
However, developers currently face a significant tooling

gap when analyzing modern heterogeneous managed appli-
cations. Traditional JVM profiling tools such as Java Flight
Recorder [1], VisualVM [2], and JProfiler [8] excel at ana-
lyzing CPU-bound execution within the managed runtime
but provide no visibility into accelerator utilization, device
memory management, or cross-device data movement. In
contrast, vendor-specific GPU profiling tools like NVIDIA
Nsight [5], Intel VTune [4], and AMD Radeon Profiler [3] of-
fer detailed hardware insights but operate at the native code
level, disconnected from the high-level managed application
context. This disconnect leaves developers without a unified
view of how their Java applications actually behave across
the heterogeneous computing stack.
A key innovation of TornadoVM [9, 10] is its specialized

bytecode system that serves as an orchestration layer be-
tween the JVM and heterogeneous devices. These bytecodes
capture the complete execution of heterogeneous applica-
tions - from task scheduling, execution and memory allo-
cation to data transfers and device synchronization. Unlike
standard Java bytecodes that represent computational oper-
ations, TornadoVM bytecodes encode the runtime decisions
and resource management operations that govern heteroge-
neous execution. This bytecode stream provides a view into
how managed applications actually utilize heterogeneous
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hardware, revealing patterns invisible to traditional profiling
approaches.

However as the complexity of applications and hardware
configurations increases, developers face significant chal-
lenges in understanding:
1. How tasks are scheduled and executed across multiple

devices.
2. How data flows between the host and various accelerators.
3. When and why specific bytecode operations occur and

what they reveal about runtime behavior.
4. How memory is allocated, transferred, and deallocated

across the memory hierarchy.
5. What optimization opportunities exist at the intersection

of managed code and heterogeneous hardware.
These challenges become particularly acute when diagnos-

ing performance issues, memory bottlenecks, or unexpected
behavior in heterogeneous environments, where the root
cause may span both managed runtime decisions and low-
level hardware interactions.
In this work, we introduce TornadoViz1, an open-source

interactive tool designed to bridge this tooling gap by lever-
aging TornadoVM’s bytecode execution traces to provide
a unified view of heterogeneous managed application be-
havior. By interpreting and visualizing the bytecode stream
that orchestrates heterogeneous execution, our tool connects
high-level application logic with low-level hardware utiliza-
tion patterns. Built on modern web technologies and by
leveraging interactive data visualization techniques, the tool
enables developers to:
• Visualize task graph dependencies and execution patterns
across devices.

• Track memory operations and object lifecycles throughout
the heterogeneous memory hierarchy.

• Analyze bytecode distribution patterns to gain insight into
runtime behavior.

• Identify performance bottlenecks and optimization oppor-
tunities that span managed and native execution.

2 Background
2.1 TornadoVM Overview
TornadoVM [7, 9, 10] is a plug-in to OpenJDK and GraalVM
that allows programmers to accelerate Java programs on
heterogeneous hardware. It utilizes a task-based program-
ming model where developers identify parallelizable tasks
that can be offloaded to accelerators. TornadoVM dynami-
cally compiles these tasks into platform-specific code, such
as OpenCL, PTX, and SPIR-V, facilitating execution across a
diverse range of hardware, including multi-core CPUs, GPUs,
and FPGAs.

1https://github.com/beehive-lab/tornadoviz

Table 1. The TornadoVM bytecode operations.

Category Bytecode Description

Context BEGIN
Mark the start of execution
context for a device

END
Mark the end of
execution context

Allocation ALLOC
Allocate memory buffer
on target device

DEALLOC
Free memory buffer
on device

Data Transfer

TRANSFER_HOST_TO_DEVICE_ONCE
Send data from host
to device (once, blocking)

TRANSFER_HOST_TO_DEVICE_ALWAYS
Send data from host
to device (always, blocking)

TRANSFER_DEVICE_TO_HOST_ALWAYS
_BLOCKING

Send data from device
to host (always, blocking)

Execution LAUNCH
Execute kernel/task
on target device

BARRIER
Synchronize execution
across events

State
Management

ON_DEVICE
Verify object presence
on device

PERSIST
Mark object for persistence
on device

2.2 TornadoVM Bytecode System
At the core of TornadoVM’s execution model is a special-
ized bytecode system that functions as an intermediary layer
between standard Java bytecode and the generation of device-
specific machine code. These bytecodes encapsulate high-
level operations essential for heterogeneous computing, such
as memory allocation, on-device object states, data trans-
fers between the host and the device, kernel execution, and
synchronization. Then the TornadoVM bytecode interpreter
processes these bytecodes to orchestrate the entire execution
flow across the various hardware devices.
Table 1 showcases the full set of TornadoVM bytecodes.

These bytecodes are split into five main categories: Context,
Allocation, Data Transfers, Execution and State Mana-
gement. The analysis of the patterns and interdependencies
within these bytecode operations is fundamental to optimize
applications for heterogeneous environments. However, the
complexity of these patterns escalates significantly with an
increase in the number of tasks, the involvement of multiple
devices, and intricate data dependencies, rendering manual
analysis impractical.
Listing 1 highlights the rich meta-data embedded in the

TornadoVM bytecodes through an execution trace of a vec-
tor addition application. This example showcases two sub-
sequent TaskGraphs, s0 and s1 perform vector additions
on an NVIDIA GeForce RTX 3070. This execution trace re-
veals several important aspects of TornadoVM’s bytecode
richness:
Object Lifecycle Tracking: Each memory object is as-

signed a unique hash code (e.g., 0x289710d9) that persists
throughout its lifecycle, enabling precise tracking of object
allocation, transfers, persistence decisions, and deallocation
across multiple execution contexts.ResourceManagement
Metadata: Operations include detailed resource informa-
tion such as memory sizes (size=88), batch configurations
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Interpreter instance running bytecodes for: [NVIDIA CUDA] -- NVIDIA GeForce RTX 3070
bc: BEGIN
bc: ALLOC IntArray@289710d9 on NVIDIA RTX 3070, size=88, batchSize =0
bc: TRANSFER_HOST_TO_DEVICE_ONCE [Hash:0 x289710d9] IntArray@289710d9 size=88, offset =0 [Status: Transferred]
bc: LAUNCH task s0.t0 - add on NVIDIA RTX 3070 [event list =0]
bc: PERSIST [0 x289710d9] IntArray@289710d9 on NVIDIA RTX 3070
bc: DEALLOC [0 x5dd1c9f2] IntArray@5dd1c9f2 [Status: Freed]
bc: BARRIER event -list 3
bc: END
Interpreter instance running bytecodes for: [NVIDIA CUDA] -- NVIDIA GeForce RTX 3070
bc: BEGIN
bc: ON_DEVICE [0 x289710d9] IntArray@289710d9 on NVIDIA RTX 3070
bc: LAUNCH task s1.t1 - add on NVIDIA RTX 3070 [event list =0]
bc: TRANSFER_DEVICE_TO_HOST_ALWAYS_BLOCKING [0 x324a0017] IntArray@324a0017 size=88, offset =0
bc: DEALLOC [0 x324a0017] IntArray@324a0017 [Status: Persisted]
bc: END

Figure 1. An example of the TornadoVM bytecode execution trace.

(batchSize=0), and memory offsets (offset=0), providing
complete visibility into resource utilization patterns. Ex-
ecution State Information: Each operation records its
execution status (Status: Transferred, Status: Freed,
Status: Persisted) and event dependencies (event list=0),
enabling precise reconstruction of execution flow and syn-
chronization behavior.Cross-ContextOptimizationTrack-
ing: The trace shows how TornadoVM optimizes across
execution contexts—objects persisted in the first context
(PERSIST [0x289710d9]) are efficiently reused in the sec-
ond context (ON_DEVICE [0x289710d9]), avoiding redun-
dant data transfers. Device-Specific Information: Each
operation includes complete device identification and config-
uration details, enabling analysis of multi-device execution
patterns and load distribution.
This rich metadata embedded in TornadoVM bytecodes

provides a comprehensive view of heterogeneous execution
that is unavailable through traditional profiling approaches.
However, extracting meaningful insights from such complex,
multi-dimensional execution traces requires sophisticated
visualization and analysis techniques. The temporal relation-
ships between operations, object lifecycle patterns, memory
usage trends, and cross-device dependencies create a com-
plex web of information that is difficult to analyze manu-
ally, particularly for applications with multiple tasks, large
datasets, and complex execution flows.

3 Use Case: Visualizing heterogeneous
execution of GPULlama3.java

To demonstrate the effectiveness of TornadoViz, we set out
to analyze the traces of a real-world application that uses
TornadoVM to accelerate its execution. For this purpose we
used GPULlama3.java [11], an open-source implementation
of the Llama3.java [12] that accelerates LLM inference in
pure Java. GPULlama3.java is a complex AI inference frame-
work that supports the GPU execution of multiple models
such as Llama3, Mistral, etc.

Table 2 shows that while the fundamental structure of
the GPULlama3.java application remains constant - with the
same number of task-graphs and defined tasks - the number
of executed tasks skyrockets from 12,950 for a small prompt
to 54,131 for a large one. This explosion in dynamic opera-
tions directly translates into a more than six-fold increase in
the size of the log file. Faced with thousands of lines of dense,
multi-dimensional trace data, a developer cannot be expected
to manually identify performance bottlenecks, track memory
dependencies, or understand the intricate temporal relation-
ships between tasks. This evidence powerfully motivates
the argument that sophisticated, automated tools to parse,
analyze, and visualize these complex logs are not merely a
convenience but an absolute necessity to harness the full
potential of the rich performance metadata that TornadoVM
provides.

3.1 Memory Objects Timeline Analysis
Listing 1 showcases that the bytecodes include the unique
hashes for objects as assigned in the JVM. TornadoViz uses
the JVM’s System.identityHashCode (32-bit) to identify
objects. Collisions are rare in typical TornadoVM workloads,
as the number of concurrently alive GPU objects is far be-
low problematic thresholds. Therefore, the Memory Objects
Lifecycle analysis module on TornadoViz utilizes this
information, which is already present in the bytecodes, to
create a visual timeline of the object lifecycle.
Figure 2 showcases the Memory Object Timeline view.

The figure shows each of the objects used by any given
application, tracks when each object was allocated, deallo-
cated, and transferred to or from the device. At the top part
of the figure, the names of each individual TaskGraph are
listed, while the bottom part lists the names of the executed
Tasks. Through this layout, the timeline of each object can be
tracked based on the status kept while different TaskGraphs
were executed.

Tomanage toworkwith oversized log files, TornadoViz pro-
vides interactive analysis to narrow down the scope of the
views with the following two components:
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Table 2. Key metrics from generated logs for prompts of varying token lengths.

Size Taskgraphs Tasks Objects Executed Tasks Executed Bytecodes Log-file (LOCs)
Small 18 259 31 12950 1230 838
Medium 18 259 31 28490 2583 1732
Large 18 259 31 54131 4907 5743

Figure 2.Memory Object Timeline in TornadoViz with the bytecodes obtained when running the GPULlama3.java application.

1. Visualization Controls: include several controls for fil-
tering and analysis:
• Minimum Memory Size: Filter objects below a certain
memory threshold.

• Time Scaling: Adjust temporal resolution (i.e., Linear,
Log, Dense scaling shown).

• Simplified View: Toggle that hides temporary objects
and compress repetitive patterns.

• Show Task Names: Toggle visibility of task names at
the bottom.

2. Subregion Selection Controls: include options to zoom
in/out or select specific regions of the view. One can se-
lect a single or multiple TaskGraphs to analyze specific
behavior of the objects associated with them. For example,
Figure 3 depicts the state of object between two different
TaskGraphs.

3.2 Memory Usage Over Time Analysis
Memory management is a critical aspect of GPU accelera-
tion, particularly when dealing with large-scale applications
that may experience varying memory pressure throughout
execution. To address this challenge, TornadoViz provides a
comprehensive Memory Usage Over Time analysis module
that enables developers to monitor and understand the mem-
ory footprint of their applications on the accelerator device.
Figure 4 illustrates the memory usage profile captured during

the execution of the GPULlama3.java application. The visu-
alization reveals distinct phases of memory allocation and
usage patterns, with the most notable characteristic being
the sharp initial increase in memory consumption followed
by sustained plateau periods. This pattern suggests an initial
allocation phase where the application loads data structures
and model parameters onto the GPU memory, followed by
stable execution phases where memory usage remains rela-
tively constant. The interactive dashboard provides several
key insights for performance optimization. First, it identi-
fies peak memory usage periods, allowing developers to
understand the maximum memory pressure their applica-
tions exert on the accelerator. In this example, the memory
usage rapidly escalates from near-zero to approximately 3.5-
4.0 GB during the initial execution phase, then maintains
this level throughout the remaining execution time with a
slight increase toward the end. Second, the tool enables gran-
ular analysis of how different TaskGraphs contribute to the
overall memory footprint. The timeline visualization shows
discrete allocation events (represented by the orange mark-
ers) that correspond to specific task execution phases. This
granular view allows developers to identify which compu-
tational tasks are the most memory-intensive and optimize
accordingly. The sustained memory usage pattern observed
in Figure 4 is typical of inference workloads where model
weights and intermediate tensors remain resident in GPU
memory throughout execution. The slight uptick at the end
may indicate additional allocations for output processing or
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Figure 3. Example of using subregion selection of Figure 2.

Figure 4. Overview of the Memory Usage Over Time dash-
board, showing howmemory usage on the device grows over
time when different TaskGraphs execute.

Figure 5. Distribution of bytecode operations from the
GPULlama3.java application.

cleanup operations. This type of analysis is invaluable for
understanding memory bottlenecks, optimizing batch sizes,
and ensuring efficient resource utilization in production de-
ployments.

3.3 Bytecode Detailed Analysis
Understanding the distribution and characteristics of byte-
code operations is essential for optimizing GPU-accelerated

Java applications. TornadoViz provides comprehensive byte-
code analysis capabilities that enable developers to identify
performance bottlenecks and memory allocation patterns at
the operation level. Also, it provides fine-grained granularity
were one can track the history of single object and which
bytecodes are associated with it.

3.3.1 Bytecode Allocation. Analyzing the distribution of
the bytecode operations can reveal the frequency and types
of operations observed during the GPU acceleration. Figure 5
presents the distribution profile for the GPULlama3.java ap-
plication. The pie chart analysis reveals several key insights
about the application’s computational characteristics. AL-
LOC is the most dominant operation of the execution pro-
file, taking 26.7% of the overall bytecode operations. Subse-
quently, the DEALLOC operations account for approximately
25.0% of all bytecode operations, indicating significant mem-
ory management overhead. The small difference between
the ALLOC and DEALLOC percentages suggests a balanced
allocation/deallocation pattern typical of memory-intensive
applications. The presence of LAUNCH operations (visible in
smaller percentages) corresponds to kernel launch activities,
while TRANSFER operations represent the data movements
between host and device memory spaces. This distribution
pattern is characteristic of deep learning inference work-
loads, where frequent memory allocations and deallocations
occur for intermediate tensor computations. The relatively
high percentage ofmemorymanagement operations (ALLOC
and DEALLOC combined representing over 50% of opera-
tions) suggests that memory optimization strategies could
yield significant performance improvements.

3.3.2 BytecodeOperationDetails. Beyond the high-level
distribution analysis, TornadoViz provides granular operation-
level insights through its detailed operation viewer. Fig-
ure 6 presents the comprehensive operation details interface,
which allows developers to examine individual operations
within specific TaskGraphs and understand their memory
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Figure 6. Bytecode operation analysis interface showing individual operations and their objects. The table provides information
about TaskGraph assignment, operation types, object details, memory sizes, and GPU device mapping for each bytecode.

footprint and execution characteristics. The detailed anal-
ysis interface provides several critical pieces of informa-
tion for each operation. The TaskGraph column identifies
which computational graph each operation belongs to, en-
abling developers to trace operations back to specific algo-
rithmic components. In the GPULlama3.java example, oper-
ations are primarily distributed between "activationUpdate"
and "layer" TaskGraphs, corresponding to neural network
forward pass computations. The Operation column spec-
ifies the exact bytecode operation type (ALLOC, TRANS-
FER_HOST_TO_DEVICE_ALW, LAUNCH, PERSIST, BAR-
RIER, ON_DEVICE), providing insight into the computa-
tional and memory management patterns. The Objects col-
umn reveals the data structures being manipulated, with
FloatArray objects of various sizes being the primary data
types, consistent with neural network tensor operations. The
Size column provides information about the memory foot-
print of each object. Knowing the size at the object level
enables developers to identify memory-intensive operations
and optimize their data layout accordingly. The Status col-
umn provides execution state information, while the Details
column offers comprehensive information about the spe-
cific objects and their locations on the GPU device (NVIDIA
CUDA - NVIDIA GeForce RTX 3070 in this example). This
level of detail is essential for debugging memory-related
issues and understanding the mapping of Java objects to
GPU memory spaces. The filtering capabilities (Filter by
TaskGraph, Filter by Operation Type, and Search Objects)
enable developers to focus their analysis on specific aspects
of the application, making it easier to identify bottlenecks in
large-scale applications with thousands of operations.

4 Conclusion & Future Work
This paper presented TornadoViz, an interactive visual an-
alytics tool that addresses the critical tooling gap in het-
erogeneous managed runtime systems. By leveraging Tor-
nadoVM’s specialized bytecode system, TornadoViz provides
developers with unprecedented visibility into the execution
patterns, memory management, and resource utilization of

GPU-accelerated Java applications. Our tool successfully
bridges the divide between high-level managed application
logic and low-level hardware utilization patterns. The eval-
uation using GPULlama3.java demonstrates the tool’s ef-
fectiveness in analyzing complex heterogeneous workloads,
revealing insights such as memory allocation patterns that
dominate execution profiles and cross-device optimization
opportunities that would be invisible to traditional profiling
approaches. TornadoViz enables developers to identify per-
formance bottlenecks, optimize memory management strate-
gies, and understand the intricate relationships between
managed runtime decisions and heterogeneous hardware
utilization.
Future work includes real-time monitoring to enable de-

velopers to observe heterogeneous applications during ex-
ecution with live performance analysis and immediate bot-
tleneck identification. Also, integration with development
environments, particularly IntelliJ IDEA, would embed het-
erogeneous performance analysis directly into the coding
workflow, making optimization insights accessible during
development. Finally, merging TornadoViz with traditional
profiling tools would create a unified analysis platform that
combines the deep heterogeneous insights of bytecode-level
analysis with conventional CPU profiling metrics.
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