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Abstract
The increasing prevalence of heterogeneous computing sys-
tems, incorporating accelerators like GPUs, has spurred the
development of advanced frameworks to bring high perfor-
mance capabilities to managed languages. TornadoVM is
a state-of-the-art, open-source framework for accelerating
Java programs. It enables Java applications to offload compu-
tation onto GPUs and other accelerators, thereby bridging
the gap between the high-level abstractions of the Java Vir-
tual Machine (JVM) and the low-level, performance-oriented
world of parallel programming models, such as OpenCL and
CUDA. However, this bridging comes with inherent trade-
offs. The semantic and operational mismatch between these
two worlds - such as managed memory versus explicit mem-
ory control, or dynamic JIT compilation versus static kernel
generation - TornadoVM to limit or exclude support for cer-
tain Java features. These limitations can hinder developer
productivity and make it difficult to identify and resolve
compatibility issues during development.
This paper introduces TornadoInsight, a tool that sim-

plifies development with TornadoVM by detecting incom-
patible Java constructs through static and dynamic anal-
ysis. TornadoInsight is developed as an open-source In-
telliJ IDEA plugin that provides immediate, source-linked
feedback within the developer’s workflow. We present the
architecture of TornadoInsight, detail its inspection mech-
anisms, and evaluate its effectiveness in improving the devel-
opment workflow for TornadoVM users. TornadoInsight is
publicly available and offers a practical solution for enhanc-
ing developer experience and productivity in heterogeneous
managed runtime environments.
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1 Introduction
Modern computing architectures have become heteroge-
neous, leveraging specialized hardware accelerators such
as GPUs and FPGAs, to boost performance for parallel
workloads. While low-level programming models, such as
OpenCL [9] and CUDA [3], provide fine-grained control
over hardware accelerators, they present a steep learning
curve - particularly for developers accustomed to high-level,
object-oriented languages like Java and C++. This challenge
is even more pronounced for managed languages such as
Java, where features like automatic memory management,
strong type safety, and runtime introspection are fundamen-
tally at odds with the explicit memory handling, weak typing,
and rigid execution models of the low-level programming
models. Bridging these paradigms requires not only rethink-
ing programming abstractions but also navigating semantic
mismatches that complicate integration, debugging, and per-
formance tuning. TornadoVM has emerged as a promising
solution, enabling Java applications to offload computations
onto hardware accelerators without requiring developers to
write low-level accelerator code [1, 4, 5, 11].

Despite its advancements, programming with TornadoVM
presents its own set of challenges. A primary hurdle is that
TornadoVM supports a subset of Java features due to differ-
ences in programming models between Java and underlying
accelerator technologies (e.g., OpenCL [9], CUDA [3], SPIR-
V [6]). For example, exception handling constructs - such as
traps and catch clauses - are unsupported within accelerated
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code regions (e.g., methods), as the underlying OpenCL and
CUDA drivers lack the capability to propagate or manage
such runtime behaviors. Similarly, dynamic memory alloca-
tion is not permitted in these regions because the generated
accelerated code is statically compiled; hence, any attempt
to introduce dynamic constructs would necessitate recompi-
lation, disrupting performance and correctness. These limi-
tations are not always apparent to developers, resulting in
runtime errors or unexpected behavior due to the inadvertent
usage of unsupported features. Furthermore, TornadoVM’s
exception handling can be obscure, making it difficult for
developers to pinpoint the source of issues. Consequently,
there is a pressing need for a developer-centric tool that
can identify these incompatibilities early in the development
cycle and provide actionable feedback.

To address this need, we have developed TornadoInsight,
a tool specifically designed to simplify development with
TornadoVM and make heterogeneous computing more acces-
sible to Java developers. Delivered as an open-source1 IntelliJ
IDEA plugin, TornadoInsight integrates naturally into the
developer’s workflow, offering immediate and actionable in-
sights during code development. TornadoInsight enhances
developer productivity by:
• Employing static analysis using IntelliJ IDEA’s Program
Structure Interface (PSI) to detect common TornadoVM
incompatible Java features directly as code is written.

• Introducing a novel dynamic inspection module that
leverages the developer’s installed TornadoVM software,
to enable the detection of issues that are not identifiable
through static analysis alone, such as dynamic memory
allocation patterns manifesting at runtime.

• Providing clear visual feedback within the IDE, high-
lighting problematic code sections and offering explana-
tions for the incompatibility.

• Offering a user-friendly interface, including a tool win-
dow for managing inspections and a dedicated console for
dynamic analysis output.

2 Background
2.1 TornadoVM and Programming Challenges
TornadoVM allows Java developers to offload the execution
of parts of their applications on heterogeneous hardware, by
dynamically compiling Java bytecode to OpenCL C, PTX, or
SPIR-V for execution on devices, such as multi-core CPUs,
GPUs, and FPGAs [1, 5]. It uses a task-based model, where
each task is annotated with TornadoVM annotations, such
as @Parallel and @Reduce, which are used by developers
to express parallelizable loops and reduction operations, re-
spectively [4, 10]. Tasks with interdependencies—such as
one producing data consumed by another—can be composed
within a TaskGraph, enabling the formation of task chains.

1GitHub link: https://github.com/beehive-lab/tornado-insight

This structure allows TornadoVM to analyze and optimize
the data flow across tasks, potentially improving the transfer
efficiency between the host CPU and accelerator devices.

Despite offering a hardware-agnostic JavaAPI, TornadoVM
presents challenges for Java developers due to the semantic
mismatch between the high-level abstractions of the JVM,
and the low-level performance-centric nature of parallel pro-
grammingmodels, such as OpenCL andCUDA. This trade-off
primarily arises from the following constraints:

• No Object Support: Instantiating arbitrary objects on
accelerators is not supported due to differences in terms
of the memory layout and management between Java and
C-based parallel programming models [13]. Only primi-
tive types, their arrays, and specific TornadoVM-provided
objects (e.g., VectorFloat) are supported by the TornadoVM
compiler. For instance, the TornadoVM VectorFloat4 object
is compiled by TornadoVM to use OpenCL vector types
(float4).

• No Recursion: Heterogeneous parallel programming
models do not support or have limited support (CUDA) of
recursion due to assumptions of deterministic execution
and limited stack space on GPUs.

• Limited Exception Handling: Exception handling on
GPUs is fundamentally limited. For instance, in a division-
by-zero scenario on the CPU, a flag is typically set in a
special register, which the operating system can then in-
spect and relay to the application runtime—such as the
Java Virtual Machine (JVM)—to properly handle the excep-
tion. In contrast, GPUs lack such exception propagation
mechanisms, meaning there is no standard way to signal
or manage exceptions at the hardware or driver level [2].
As a result, TornadoVMmust insert additional control-flow
constructs to ensure that such exceptional conditions are
preemptively avoided during execution.

• No Static TaskGraphs/Tasks: Defining TaskGraph ob-
jects or tasks as static fields can lead to deadlocks between
the user thread running class initialization and the Tor-
nadoVM JIT compiler; hence it is not supported.

• No Dynamic Memory Allocation: Heterogeneous par-
allel programming models, such as OpenCL and CUDA,
do not support dynamic allocation of buffers used for
data transfer between the CPU and accelerator devices.
In adherence to this constraint, TornadoVM offers auto-
mated memory management by abstracting the allocation
and deallocation of buffers for each task. As a result, the
dynamic memory allocation at runtime is not permitted
within the TornadoVM execution model.

• No Invocation of JVM or Native Libraries: Tasks com-
piled for execution on accelerator devices are restricted
from invoking functions that interact with the JVM, native
libraries, or the operating system - such as I/O operations,
reflection, or thread management - due to their execution
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context being isolated from the host environment. How-
ever, certain exceptions exist. For instance, calls to mathe-
matical functions (e.g., sin, cos) from the java.lang.Math
package are recognized by TornadoVM’s compiler and re-
placed with equivalent low-level intrinsics in the target
backend (e.g., OpenCL, PTX, or SPIR-V).
Due to these constraints, developers often learn which

Java features are unsupported only after encountering ob-
scure console output.

2.2 IntelliJ Platform SDK
TornadoInsight is built as an IntelliJ IDEA plugin, lever-
aging the IntelliJ Platform SDK [8]. The SDK provides a
rich environment for building developer tools. To implement
TornadoInsight, we used the following key components:
• Program Structure Interface (PSI): PSI is crucial for
static analysis, as it parses files and creates a syntactic and
semantic model of the code. Various PSI elements (e.g.,
classes, methods, variables) are organized hierarchically,
allowing for detailed traversal and code inspection.

• Extension Points: The IntelliJ Platform allows plugins
to extend the functionality of the editor through declared
extension points. TornadoInsight uses these for creat-
ing custom code inspections, tool windows, and settings
panels, facilitating its seamless integration into the IDE.

• Java Swing: This library is useful for the development of
the user interface components, such as the tool windows
and dialogs.

3 TornadoInsight Architecture
TornadoInsight is architected to provide a seamless and in-
formative experience for developers using TornadoVM. This
section presents the core components of TornadoInsight,
including a static inspection module (Section 3.1), a dynamic
inspection module (Section 3.2), a user interface module
(Section 3.3), and a communication module (Section 3.4) that
coordinates their activities. A prime design principle has
been to maximize efficiency by relying heavily on static
checks, while also reserving more resource-intensive dy-
namic checks for issues that cannot be identified statically.

3.1 Static Inspection Module
The static inspection module leverages the JetBrains code
inspection framework [7] to perform on-the-fly checks as the
developer writes code. Custom inspections are implemented
by extending the AbstractBaseJavaLocalInspectionTool
Java class, and providing a PsiElementVisitor (typically a
JavaElementVisitor or JavaRecursiveElementVisitor)
to traverse the PSI tree of the active Java file. When a
TornadoVM annotation, such as @Parallel or @Reduce is
found, its parent method (i.e., the TornadoVM task) is iden-
tified. The task body is then traversed to apply specific
inspection rules. Any detected issues are reported via a

ProblemsHolder, which serves as a mechanism for regis-
tering problems (e.g., warnings, errors, or informational mes-
sages). Thus, TornadoInsight can highlight the problematic
code and display a descriptive message.

3.1.1 Implemented Inspectors. TornadoInsight inclu-
des six distinct types of inspectors, each classified according
to its functional role in identifying TornadoVM-incompatible
constructs:

1. Data Type Inspector: Verifies that method parameters
and local variables within TornadoVM tasks conform to a
set of supported primitive types, their array equivalents,
and recognized TornadoVM-specific data structures (e.g.,
VectorFloat). The list of supported types is deserialized
from a configuration file to improve maintainability and
extensibility.

2. Recursion Inspector: Analyzes method call expressions
within a task to detect both direct recursion (where a
task method calls itself) and indirect recursion (where a
sequence of method calls within the same compilation
unit eventually leads back to the original task method).

3. Exceptions Inspector: Identifies the presence of exce-
ption-related constructs, such as throw statements, try-
catch blocks, and methods declaring throw clauses; which
are generally unsupported in code compiled by Tor-
nadoVM.

4. Assert Inspector: Flags the use of assert statements
within tasks, as these may be ignored during TornadoVM
compilation and execution.

5. Static Task & TaskGraph Inspector: Detects improper
declarations of TaskGraph fields or task definitions within
static initializer blocks, which are disallowed under the
TornadoVM execution model.

6. JVM, OS-dependent, and Native Method Call Inspec-
tor: Flags invocations of JVM or OS-dependent methods
within tasks, including references to known unsupported
classes (e.g., java.lang.System, etc.) and any methods
marked as native.

3.2 Dynamic Inspection Module
To catch issues missed by static analysis (e.g., code genera-
tion or dynamic memory usage), TornadoInsight includes
a dynamic inspection module. Developers can select a stati-
cally verified TornadoVM task from the tool window, trigger
JIT compilation, and provide input parameters via an in-
teractive dialog. Upon user configuration, TornadoInsight
performs the following steps:

1. Generates a Java class:At runtime, a new Java class is au-
tomatically generated containing the selected task, a main
method to initialize input parameters and the associated
TaskGraph, along with all necessary imports. The method
parameters are encapsulated using a Method entity.
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2. Compiles the generated class: The generated class is
compiled using javac, with the TornadoVM runtime JAR
included in the classpath.

3. Packages into an executable JAR: A manifest file spec-
ifying the entry point is created, and the compiled class
(.class) is packaged into an executable JAR archive.

4. Executes using TornadoVM: The generated JAR is exe-
cuted within the user’s configured TornadoVM environ-
ment. TornadoVM is configured by the users in the settings
panel (see Section 3.3).

5. Analyzes runtime output:The standard output from the
TornadoVM runtime is captured and analyzed for specific
exceptions or known error patterns. For example, the in-
spector can detect runtime failures related to unsupported
dynamic array creation.

This entire process runs on a separate thread to avoid block-
ing the user interface.

3.3 User Interface and Developer Experience
TornadoInsight features a user interface designed to pro-
vide a non-intrusive yet informative experience, seamlessly
integrated into the IntelliJ IDEA environment.

• Settings Panel: Embedded within the IntelliJ settings in-
terface, this panel enables users to specify the path to their
TornadoVM environment variable file (Figure 1). The plu-
gin verifies the TornadoVM setup for correctness and com-
pleteness, via the Configuration Listener (see Section 3.4).

• Tool Window: A dedicated TornadoVM tool window lists
the valid TornadoVM tasks identified in the open Java class
file, as shown in Figure 2a. It also displays the result of the
static inspection, and allows users to initiate the dynamic
inspection process by selecting a task from the list.

• Real-time Static Feedback: Results from static analysis
are presented as inline code annotations, such as red wavy
underlines, with tooltips offering concise explanations.
Where applicable, detailed descriptions or documentation
links are provided to guide users in resolving compatibility
issues, as presented in Figure 2b.

• Console Output: The TornadoInsight Console provides
real-time feedback on the progress and results of dynamic
inspections, allowing users to monitor the execution and
debug output directly within the IDE. For instance, Figure 3
shows an OpenCL C kernel for vector addition success-
fully generated by TornadoVM during dynamic inspec-
tion. TornadoInsight used the user-defined array size
as defined in the Settings Panel and reports the overall
inspection time.

3.4 Communication and Data Synchronization
To ensure a responsive and seamless user experience within
TornadoInsight, requires effective communication between

its code components. This is accomplished through a com-
bination of event listeners (Section 3.4.1) and a robust data
synchronization mechanism (Section 3.4.2).

3.4.1 Event Listeners. TornadoInsight leverages sev-
eral IntelliJ Platform listeners to monitor and respond to
changes in the development environment:
• Configuration Listener: Triggered when a project is
opened, the ProjectManager listener checks whether the
TornadoVM environment has been properly configured. If
not, the user is notified with a corresponding message.

• File Activity Listeners: The Tool Window and File-
EditorManager listeners respond to tool window activa-
tion, file switches, and changes within the currently open
file. This ensures that the task list displayed in the tool win-
dow remains accurate and up to date as the user navigates
and modifies source files.

• Live Code Edit Listener: TornadoInsightemploys the
PsiTreeChangeListener to monitor real-time modifica-
tions in the Program Structure Interface tree, allowing for
immediate updates to the task list as the user modifies
code within the active file.

3.4.2 Data Synchronization. To ensure correctness, the
tool window displays only those tasks that are both syntac-
tically valid and free from static analysis violations. When
a static inspector identifies a violation and registers it us-
ing ProblemsHolder, the corresponding PsiMethod is added
to a shared, thread-safe CopyOnWriteArraySet Java class.
A custom message bus Topic (e.g., TornadoTaskRefresh-
Listener) is then used to broadcast updates. Upon receiving
such a message, the tool window component refreshes its
task list and filters out any methods flagged as problematic.

4 Tool Demonstration
To demonstrate the usability and effectiveness of our tool,
we describe a series of annotated screenshots demonstrating
its key capabilities. These visual examples highlight how
the plugin assists developers in identifying and resolving
TornadoVM compatibility issues through static and dynamic
analysis features integrated into IntelliJ IDEA.

4.1 Configuration Panel
TornadoInsight provides a dedicated settings panel where
developers configure the plugin’s behavior. Figure 1 presents
the settings panel that includes the configuration of the Tor-
nadoVM root directory, the Java SDK, default array sizes for
dynamic analysis, and debug options. The debug options are
intended for the plugin developers in order to log the auto-
matically generated class, as discussed earlier in Section 3.2.
4.2 Static Analysis of TornadoVM Tasks
As the user writes Java code using TornadoVM annotations
(e.g., @Parallel), the static checker actively inspects each
task for unsupported constructs. Figure 2a shows an example
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Set the directory path of the TornadoVM repository

Set the path to the JDK

Set the tentantive array size for your tasks

Set the tentantive size of the shape to be used 
if your task uses the TornadoVM Tensor types

Click ApplyFigure 1. Overview of the TornadoInsight Settings Panel.

(a) Static Inspection and TornadoVM Tasks Window. (b) Static Feedback of Unsupported Behaviour.

Figure 2. Overview of the TornadoInsight Settings and Static Inspection Workflow.

that recognizes the TornadoVM annotation in line 39, and
indicates that the static validation has detected an error via
the red exclamation mark. The error is attributed to the static
declaration of the task (line 57), which is not supported as
described in Section 2.1. A second example of using the static
analysis is shown in Figure 2b, where an unsupported data
type, such as ArrayList<Integer> is used. In this case, the
plugin provides a descriptive tooltip and guidance.

4.3 Dynamic Inspection Results
TornadoInsight enables runtime analysis of tasks by gen-
erating OpenCL kernels based on configured parameters.
Users can invoke this from the tool window, and results are
displayed in a dedicated console. When the inspected code
is valid, TornadoInsight successfully runs the dynamic in-
spection and the generated kernel is displayed in the ded-
icated TornadoInsight Console (Figure 3), along with the

inspection time. This immediate feedback enables develop-
ers to validate TornadoVM compatibility without leaving the
IDE. When invalid constructs are present (e.g., unsupported
method calls or exceptions), TornadoInsight reports the
exact failure trace to help with debugging (Figure 4).

4.4 Usage and Integration of TornadoInsight
TornadoInsight is available on the JetBrains Marketplace
and can be installed directly within IntelliJ IDEA (version
2022.3 or later). Once installed, it can be used in any project
that imports the TornadoVM API, enabling both static and
dynamic inspections out of the box. This allows developers to
catch compatibility issues early and optimize their workflow.
Notable projects already benefiting from TornadoInsight
are the TornadoVM-Ray-Tracer, GPULlama3.java [12], etc.
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Figure 3. TornadoInsight Dynamic Inspection Output with Successful Behaviour.

Figure 4. TornadoInsight Dynamic Inspection Output with Failed Behaviour.

5 Conclusion and Future Work
This paper introduced TornadoInsight and demonstrated
its practical use within IntelliJ IDEA through real-world ex-
amples. By combining static and dynamic analysis, Tornado-
Insight detects TornadoVM-incompatible Java constructs
early. Our evaluation shows it gives actionable feedback that
boosts productivity and lowers the barrier for Java develop-
ment on heterogeneous hardware. As an open-source plugin,
it promotes community use and contribution.

Future work includes focus on the precision of dynamic di-
agnostics and automated refactoring via IntelliJ’s QuickFix
API. These developments will reinforce TornadoInsight
as a vital aid for Java developers working with hardware
acceleration.
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