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Abstract—Fully homomorphic encryption (FHE) enables pro-
cessing encrypted data without revealing sensitive information,
making it applicable in fields like healthcare, finance, and legal.
Despite its benefits, FHE has high computational complexity
and performance overhead. To address this, researchers have
explored hardware acceleration using Field-Programmable Gate
Arrays (FPGAs) and Graphics Processing Units (GPUs). FPGAs
are suitable for low-latency computations, while GPUs excel
in parallel, high-throughput tasks. However, widespread FHE
adoption remains elusive due to unresolved performance issues.

This paper explores the challenges of offloading FHE computa-
tions to hardware accelerators, focusing on the OpenFHE library
and the Brakerski-Gentry-Vaikuntanathan (BGV) scheme. It is
the first study on adapting this scheme for GPU acceleration.
We profile OpenFHE to identify computational bottlenecks and
propose integrating parallelized CUDA computations within
OpenFHE. Our solution, tested with varying numbers of mul-
tiplicative depth, shows up to 26x performance improvement
over non-accelerated implementations, proving the effectiveness
of GPUs for FHE. However, the end-to-end performance is still
up to 2x slower due to the overhead of marshaling and moving
data between the CPU and GPU, accounting for over 97% of
execution time.

Index Terms—data privacy, fully homomorphic encryption,
hardware acceleration, GPUs

I. INTRODUCTION

The continuous growth of high volumes of data has posed
significant challenges regarding the fast transferring and pro-
cessing of the information. Nonetheless, they are not the
only crucial factors. Security and data privacy are factors
of paramount importance, especially in industrial domains in
which the information may be sensitive, such as healthcare,
finance [1], intellectual property, legal, and more.

Fully homomorphic encryption (FHE) [2] is a privacy-
preserving mechanism that enables the processing of encrypted
data without exposing sensitive information [3]. Hence, in a
scenario where data must be given to a third-party software for
analysis, the data owner can receive the result of the analysis
without sharing the actual data or the decryption key.

However, the enhanced security and data privacy come at the
cost of increased computational complexity, thereby resulting
in a high-performance overhead. To tackle this inefficiency,
prior work has employed hardware acceleration platforms,
such as Field-Programmable Gate Arrays (FPGAs) [4]–[6] and
Graphics Processing Units (GPUs) [7]–[11]. Although both
hardware platforms are suitable for increasing the performance
of parallel software implementations, it is evident that there is

still no definite solution for enabling the widespread adoption
of FHE in industry. The reason is that there are several
challenges when offloading FHE computations on hardware
acceleration platforms, and ultimately, they can impact the
trade-off between data privacy, performance and scalability.

In this paper, we discuss these challenges and aim to rethink
how they can be alleviated in order to enable a harmonic
coexistence between hardware acceleration, and more specif-
ically GPUs, and FHE computations. To comprehend these
challenges better, we employ OpenFHE [12], an open-source
FHE library that does not offer GPU acceleration support by
default. Thus, OpenFHE is an ideal candidate library to study
the integration of GPU acceleration capabilities. This paper
makes the following contributions:

• We discuss the advantages and disadvantages of the FHE
libraries and the hardware acceleration platforms in order
to comprehend the source of the research challenges.

• We perform a profiling analysis of OpenFHE that reveals
the computationally expensive parts of the encrypted
computations.

• We propose our work-in-progress solution that includes
the automatic integration of a parallelized computation
implemented in CUDA within OpenFHE.

• Finally, we present an experimental performance analysis
that shows our preliminary results, which highlight the
current obstacles towards accelerating FHE libraries.

II. BACKGROUND

A. Fully Homomorphic Encryption

FHE is a novel privacy-preserving mechanism designed
to allow the computation of encrypted data without sharing
any confidential information regarding the actual data or the
decryption key. Figure 1 presents the process for performing
a computation over encrypted data with FHE. This process
consists of four steps: Step 1 : The generation of a pair of
keys, a public key used for encryption (Step 2) and a private
key used for decryption (Step 4). Step 2 : The encryption
of data which utilizes the public key generated by Step 1 and
produces a ciphertext. Step 3 : The performance of homo-
morphic operations over the encrypted data (i.e., ciphertext).
The main concept behind that step is that the computation
uses as input a ciphertext (from Step 2) and the outcome is
also a ciphertext. Common homomorphic operations include
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Fig. 1. The standard process for performing FHE computations.

addition and multiplication, which can be combined to perform
more complex computations. Step 4 : The decryption of the
produced ciphertext that holds the result of the processing
(Step 3). After decryption, the result matches the result of
the same computation as performed on the input plaintext.

In the first step, the keys are generated by using complex
mathematical formulas, typically based on lattice-based cryp-
tography [13], [14], which is resistant to quantum attacks [15].
The formulas are related to the applied encryption/decryption
schemes (or encryption systems), and they mathematically
define all steps described above. Brakerski/Fan-Vercauteren
(BFV) [16], Brakerski-Gentry-Vaikuntanathan (BGV) [17],
Cheon-Kim-Kim-Song (CKKS) [18], Fast Fully Homomor-
phic Encryption over Torus (TFHE) [19] and Gentry-Sahai-
Waters (GSW) are the state-of-the-art schemes supported by
many FHE libraries. Each scheme has unique characteristics
that determine its suitability in particular use cases. For
instance, BFV is designed for integer arithmetic operations,
CKKS is suitable for arithmetic on real numbers, TFHE is
good for binary and boolean operations, and finally BGV is
ideal for polynomial operations. Most of these schemes aim
to find the balance between the efficiency of the arithmetic
homomorphic operations and the management of the accumu-
lated noise. Every homomorphic operation adds noise to the
generated ciphertext. As more operations are performed, the
noise level increases, thereby requiring special care to ensure
that the generated ciphertext can be decrypted successfully. To
address this challenge, many schemes support bootstrapping, a
highly computationally intensive process that reduces the noise
from the ciphertext and enables more homomorphic operations
to be processed [13].

B. Hardware Acceleration

To program hardware accelerators, many programming
models (e.g., OpenCL, CUDA, oneAPI) have been provided
by hardware vendors. A programming model offers a defined
process that programmers must follow to simplify program-
ming for hardware accelerators (e.g., a GPU, an FPGA) [20].
This process is common between most programming models
and consists of three steps (Figure 2), as follows: Step 1 : The
transferring of the data to be processed from the program (i.e.,
CPU main memory) into the device memory (i.e., DRAM).
Step 2 : The parallel processing of the data. The executed
computation is usually defined in source code (e.g., CUDA C,
OpenCL C, DPC++, VHDL) or binary code (e.g., SPIR-V) that
is being compiled by the device driver prior to the execution.
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Data processing
(Step 2)

Computation
(source/binary)

Software
Program

CPU

GPU

Fig. 2. The workflow of heterogeneous programming models.

Step 3 : The transferring of the result of the computation
from the device memory back to the CPU main memory.

The performance of different workloads and algorithmic
patterns can vary depending on the device type (GPU or
FPGA). For instance, GPUs excel in high-throughput compu-
tations with thousands of threads running the same instructions
on different data. FPGAs can deploy custom hardware blocks
and allow the reconfiguration of their on-device resources like
memory blocks and logic slices at runtime.

C. Research Challenges

This section discusses the primary challenges that must
be addressed to enable the smooth integration of modern
hardware acceleration technologies within state-of-the-art FHE
libraries. In a nutshell, these challenges are attributed to the
incompatibility of data types between FHE libraries and the
hardware acceleration programming models (Section II-C2),
the difficulty in parallelizing FHE algorithms (Section II-C1),
the lack of scalability for large input data sizes (Section II-C3),
and the management of the increase noise in the ciphertext
(Section II-C4).

1) Difficulty in Parallelizing FHE Algorithms: This chal-
lenge emerges due to the sequential nature of the FHE algo-
rithms (i.e., schemes) since they have been designed mostly
to increase the data privacy and enhance the security of the
computations, rather than considering the offloading of com-
putationally expensive parts on hardware accelerators. Hence,
the adaptation of the computationally expensive algorithmic
parts into parallel implementations that can harness the power
of hardware accelerators is not straightforward and requires a
high engineering cost due to the consideration of numerous
parallel programming concepts, such as load balancing and
data synchronization.

2) Incompatible Data Types: Besides the difficulties in
parallelizing FHE algorithms, a second challenge emerges due
to incompatible data types. The majority of FHE libraries
employ common data structures for the representation of the
ciphertext, the plaintext, the public key, the secret key, and
more. Each data structure is composed of many types of
information that is useful for its entity. For instance, the
ciphertext contains information regarding the FHE scheme
information that is being used, the encryption parameters (e.g.,
the polynomial modulus degree, the coefficient modulus), as
well as the level of noise that exists in the ciphertext.



To represent all the information stored in a ciphertext into
a program (known also as kernel) that is going to be executed
on a hardware accelerator device, it is necessary to map each
information type into a data type that is supported by the
hardware acceleration programming models (e.g., OpenCL,
CUDA). These programming models offer primarily support
for scalar data types (e.g., int, float, long, double), vectors
of scalar values (e.g., int4, int8), matrices and arrays (e.g.,
floatnxm) and secondarily for more specialized data types, such
as for image processing (e.g., image2d_t) [21].

Thus, the incompatibility between the data types that are
supported by the FHE libraries and the heterogeneous pro-
gramming models hinders the productivity of fast parallel
implementations that could potentially be offloaded on hard-
ware accelerators (e.g., GPUs, FPGAs). It can also impact the
overall performance of the FHE library due to the necessity of
marshaling/unmarshaling, a process responsible for converting
data types from one format to another, and vice-versa.

3) Lack of Scalability: The memory footprint of the keys
and the ciphertexts can impact the memory latency, the noise
level of the ciphertext and the storage requirements of modern
FHE libraries. Additionally, the ability to scale up the size of
input encrypted data without sacrificing performance is of high
importance. To achieve this goal, it is useful to optimize the
memory access pattern of the FHE algorithms by considering
CPU optimization techniques (e.g., caching, pre-fetching), and
hardware acceleration optimization techniques, such as the
unified memory between CPU and accelerators [22].

In the scope of this paper, we will emphasize to the latter
class of optimization techniques. It has been evidential by prior
work that hardware accelerators can increase the performance
of the computation performed by the FHE schemes [7], [23],
as will be discussed in Section IV-B. Despite the performance
improvement by offloading the execution of a kernel on a GPU
or the FPGA, there is an equally crucial part related to: i)
the data transfers (Steps 1 and 3, discussed in Section II-B),
and ii) how often the computation described in the kernel
accesses the DRAM memory. To address the first part, some
heterogeneous programming models, such as CUDA and Intel
oneAPI LevelZero, have provided support for enabling a uni-
fied address space between the CPU and GPUs [24]. Regarding
the second part, the parallel implementations of the kernels in
OpenCL, CUDA or DPC++ can utilize the allocation of local
memory [7], [25] and data synchronization mechanisms (i.e.,
barriers) [20]. Thus, the memory access pattern of the FHE
algorithms along with the cost for transferring data can both
impact the performance of FHE computations.

4) Satisfaction of Noise Management: Finally, the level of
noise that is accumulated as the encrypted data are being
computed can play a very important role to ensure that the
resulted ciphertext is decryptable. Hence, bootstrapping and
other mechanisms for reducing the noise of ciphertexts can
be computationally expensive and can potentially harness
hardware acceleration [26].

TABLE I
PROFILING RESULTS OF THE SIMPLE-INTEGERS-BGVRNS OPENFHE

EXAMPLE, OBTAINED WITH THE CLION PROFILER.

Classification Function % Invoc.
Count

crypto context genCryptoContextBGVRNSInternal 5.5 1
key generation EvalAtIndexKeyGen 34.6 1
key generation EvalMultKeyGen 8.7 1
key generation KeyGen 4.6 1

encryption MakePackedPlaintext 1.2 1
encryption Encrypt 8.0 3
compute EvalRotate 17.5 5
compute EvalMult 12.1 2
compute EvalAdd <1 2

decryption Decrypt 6.9 6

III. GPU ACCELERATION SUPPORT FOR OPENFHE

The work that we present in this paper aims to study
the first three challenges discussed in the previous section
(Section II-C). Most importantly, in this section we employ
OpenFHE as the primary FHE library for our study. In partic-
ular, we describe a profiling analysis of the computationally
expensive parts in OpenFHE for the execution of homomor-
phic computations with the BGV scheme (Section III-A).
Then, we present the design and implementation of a parallel
implementation of the computationally heavy parts in CUDA
(Section III-B). Finally, we discuss our experimental findings
in Section III-C.

A. Identifying Opportunities for Acceleration

1) An Example of FHE Computations: We used an example
from the OpenFHE GitHub repository [27] that encrypts three
input vectors and performs fully homomorphic computations:
i) two additions on the same ciphertext, ii) two multiplications
with a different ciphertext, and iii) five rotations. Each vector
has twelve integer values. After computation, the results are
decrypted and compared to expected values.

2) Profiling Analysis: Using the CLion CPU profiler based
on perf and DTrace, we obtained the metrics in Table I.
Functions are classified by role (key generation, encryption,
decryption, compute), and the table shows the percentage of
the execution time for each function and invocation count (In-
voc. Count). The most computationally expensive functions are
EvalAtIndexKeyGen, EvalRotate and EvalMult which consume
in total 64.2% of the total execution time of the program.
EvalAtIndexKeyGen is invoked once during initialization, thus
its impact decreases as computation complexity increases. In
the compute phase, EvalRotate accounts for 17.5%, EvalMult
for 12.1%, and EvalAdd for less than 1%. Considering invo-
cation count, EvalMult is the most expensive per invocation.
Consequently, we analyzed EvalMult and identified Approx-
SwitchCRTBasis as a key function for GPU acceleration.

B. Design & Implementation

The identified ApproxSwitchCRTBasis function performs a
modular multiplication, multiplication (mul128 function), and
a barrett reduction. It has iterative data processing (loops)
with no data dependencies, allowing parallel execution on a
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Fig. 3. The GPU accelerated flow for performing parallel FHE computations.
TABLE II

EXPERIMENTAL TESTBED.

Hardware

Processor Intel Core i7-13700 @ 5.20GHz
Cores 12 (24 HyperThreads)
RAM 64GB
GPU NVIDIA GeForce RTX 3070 (Ampere)

8GB GDDR6, 5888 CUDA Cores

Software

Operating System PopOS 22.04 LTS (Kernel 6.9.3-76-generic)
CUDA Driver 550.67 (CUDA 12.4)
OpenFHE v1.0.3

GPU. Figure 3 shows the parallel implementation flow of a
fully homomorphic multiplication in OpenFHE, substituting
the computation part with a GPU-offloadable parallel im-
plementation. We began by defining appropriate data types
supported by heterogeneous hardware models. Using 128-bit
integers, supported by CUDA since version 11.5, we trans-
formed for loops into thread indices for GPU threads. The
size of GPU threads and workgroups of our implementation
will be presented in the experimental analysis (Section III-C).

C. Experimental Evaluation

To evaluate the performance of our parallel implementation,
we conducted experiments on a testbed that contains both CPU
and GPU hardware. The hardware and software specifications
of the testbed are presented in Table II. All the reported
measurements discussed in this section are the average of
one hundred executions for the accelerated and the baseline
implementations. For the CPU, we used the std::chrono C++
library to obtain precise timing data, while GPU performance
metrics were collected by utilizing the NVIDIA Nsight Sys-
tems1 tool.

Regarding the configuration of the OpenFHE parameters,
Table III presents the configuration of the multiplicative input
depth, modulus, cyclotomic, and ring dimensions for our
experiments. Additionally, it reports the GPU block and thread
allocations that we evaluated for each depth. These parameters
were chosen to showcase the performance of homomorphic en-
cryption computations as well as the required parallel threads
deployed onto the GPU across various depth values.

1) Performance Analysis: In this paragraph, we compare
the GPU kernel execution time and the end-to-end execution
time of the accelerated implementation (including kernel exe-
cution, data transfers, and data handling) against the baseline

1https://developer.nvidia.com/nsight-systems

TABLE III
CONFIGURATION PARAMETERS FOR OPENFHE AND THEIR

CORRESPONDING GPU BLOCK AND THREAD ALLOCATIONS FOR VARIOUS
MULTIPLICATIVE DEPTHS.

Input
Depth Modulus Cyclotomic Ring

Dimension Blocks Threads

1 65,537 16,384 8,192 8 1,024
5 65,537 32,768 16,384 16 1,024
12 65,537 65,536 32,768 32 1,024
24 786,433 131,072 65,536 64 1,024

TABLE IV
THE EXECUTION TIME OF THE GPU KERNEL, THE END-TO-END

ACCELERATED IMPLEMENTATION AND THE BASELINE NON-ACCELERATED
IMPLEMENTATION OF OPENFHE ACROSS DIFFERENT INPUT

MULTIPLICATION DEPTHS.

Input GPU End-to-End End-to-End
Depth Time (ms) Accel. Impl. (ms) Baseline Impl. (ms)

1 0.05 531 0.68
5 0.5 603 13

12 5 836 123
24 60 2273 1182

implementation of the EvalMult function. Table IV reports all
the execution times as measured in our experimental testbed
(Table II) in milliseconds. Figure 4 presents the speedup of
the GPU kernel and the end-to-end accelerated implementation
versus the baseline implementation. As shown, the GPU kernel
outperforms the baseline implementation for all the input
depths with a 26x maximum performance achieved for depth 5.
On the other hand, the end-to-end accelerated implementation
presents a significant performance slowdown ranging from
0.0013x (input depth 1) to 0.52x (input depth 24).

To understand better the reason behind the observed per-
formance penalty shown in the end-to-end accelerated imple-
mentation we performed a breakdown analysis of the overall
executed time in three main parts: i) the GPU kernel execution
time (i.e., the portion that shows performance speedup in
Figure 4), ii) the data transfers, which include the time spent
for transferring data from the CPU to the GPU memory, and
backwards; and iii) the rest of the time which is spent for the
marshaling/unmarshaling of the data and the allocation of the
memory buffers in the GPU memory. As shown in Figure 5,
for small input depths which present the biggest performance
slowdown the time for marshaling/unmarshaling and allocating
the GPU buffers dominates the overall time by 99.97%. This
indicates the significance of investing effort to converge the
incompatibility of the data types between FHE libraries and
heterogeneous programming models (Section II-C2).

Finally, it is shown that if the input depth increases the
percentage of that portion decreases up to 67.40% (input
depth 24), due to the fact that the arithmetic complexity of
the computation performed on the GPU and the input data
sizes also increase. Thus, GPUs can be utilized to increase
performance of FHE computations for big input depths (large
data sizes).

IV. RELATED WORK

This section reviews the state-of-the-art FHE libraries and
their hardware acceleration integration.
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A. State-of-the-art FHE Libraries

Table V summarizes the FHE libraries and their supported
encryption schemes and hardware acceleration. All libraries
are open-source, fostering community-driven development.
Microsoft SEAL [7], Lattigo [28], and PALISADE support
BFV, BGV, and CKKS schemes. TenSEAL [29], is built
on SEAL and focuses on tensor operations. TenSEAL and
HEaaN support BFV and CKKS, while HElib [30] supports
BGV and CKKS. TFHE [19] and Concrete support TFHE.
OpenFHE [12] is designed by creators of PALISADE, HElib,
HEaaN, and FHEW [31] to offer high usability and perfor-
mance.

B. Hardware Acceleration Support

OpenFHE includes a hardware abstraction layer (HAL) to
enhance homomorphic operations efficiency. The HAL layer
currently supports the Intel HEXL library utilizing the Intel
Advanced Vector Extensions (AVX) [12]. Microsoft SEAL and
PALISADE also use Intel HEXL for homomorphic encryption
acceleration [32].

Research has explored GPU efficiency for homomorphic
operations in FHE libraries such as Microsoft SEAL [7]
and TFHE [23]. Badawi et al. [8] proposed a parallel GPU
implementation of the BFV scheme outperforming Microsoft

TABLE V
OVERVIEW OF THE FHE LIBRARIES. THIS TABLE PRESENTS ALSO THE
SUPPORTED ENCRYPTION SCHEMES OF EACH LIBRARY AND WHETHER

HARDWARE ACCELERATION (HA) IS SUPPORTED.

Libraries Scheme HA Support
Microsoft SEAL BFV, BGV, CKKS AVX

TenSEAL BFV, CKKS No
Lattigo BFV, BGV, CKKS No

Concrete TFHE No
TFHE TFHE No

PALISADE BFV, BGV, CKKS AVX
HElib BGV, CKKS No

HEaaN BFV, CKKS GPU
OpenFHE BFV, BGV, CKKS, AVX

DM (FHEW), CGGI (TFHE)

SEAL and NFLlib-FV. Another study [9] analyzed multi-
threaded CPU and GPU implementations of the BFV scheme
for PALISADE. Wang et al. [10] presented the first GPU
implementation of the Gentry-Halevi FHE scheme [14]. Wang
et al. [11] also proposed a parallel GPU implementation
of the levelled FHE scheme. FPGA support has also been
extensively studied. Intel provided an open-source homomor-
phic encryption acceleration library for FPGAs (Intel Hexl
FPGA), including various kernel implementations and API
calls for third-party FHE libraries. However, the repository
was archived in December 2023. Agrawal et al. [4] de-
signed an FPGA-based architecture for accelerating RLWE-
based somewhat homomorphic encryption. Riazi et al. [5]
introduced HEAX, a high-performance architecture for fast
modular arithmetic on encrypted data, built on a parallelizable
Number-Theoretic Transform (NTT) engine. Research has also
examined shared memory conflicts and thread divergence in
cuHE NTT kernels [25]. Sinha et al. [6] proposed an FPGA-
based architecture for the BFV scheme, emphasizing the
importance of fast external memory for high performance.

Our work is the first, to our knowledge, to provide profiling
analysis and a parallel implementation for the BGV scheme
in full FHE mode.

V. CONCLUSIONS

This paper has discussed the challenges of enabling hard-
ware acceleration for FHE computations, while also using the
OpenFHE library for experimental insights. The preliminary
results of our work show that notable performance improve-
ments can be achieved from integrating parallelized CUDA
computations for the BGV scheme into OpenFHE, thereby
highlighting a promising direction for overcoming existing
barriers to FHE widespread adoption in industry.

In the future, we plan to investigate the impact of unified
memory and other optimizations in order to tackle the identi-
fied performance overhead.
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