Unified Shared Memory: Friend or Foe? Understanding
the Implications of Unified Memory on Managed
Heaps

Juan Fumero
juan.fumero@manchester.ac.uk

Florin Blanaru®
florin.blanaru@axelera.ai

Athanasios Stratikopoulos
{first}.{last}@manchester.ac.uk

The University of Manchester Axelera Al The University of Manchester
United Kingdom Netherlands United Kingdom
Steve Dohrmann Sandhya Viswanathan Christos Kotselidis

steve.dohrmann@intel.com
Intel
United States

Abstract

Adopting heterogeneous execution on GPUs and FPGAs in
managed runtime systems, such as Java, is a challenging
task due to the complexities of the underlying virtual ma-
chine. The majority of the current work has been focusing
on compiler toolchains to solve the challenge of transparent
just-in-time compilation of different code segments onto the
accelerators. However, apart from providing automatic code
generation, another paramount challenge is the seamless
interoperability between the host memory manager and the
Garbage Collector (GC). Currently, heterogeneous program-
ming models that run on top of managed runtime systems,
such as Aparapi and TornadoVM, need to block the GC when
running native code (e.g, JNI code) in order to prevent the
GC from moving data while the native code is still running
on the hardware accelerator.

To tackle the inefficacy of locking the GC while the GPU
operates, this paper proposes a novel Unified Memory (UM)
memory allocator for heterogeneous programming frame-
works for managed runtime systems. In this paper, we show
how, by providing small changes to a Java runtime system,
automatic memory management can be enhanced to per-
form object reclamation not only on the host, but also on the
device. This is done by allocating the Java Virtual Machine’s
object heap in unified memory which is visible to all hard-
ware accelerators. In this manner -although explicit data syn-
chronization between the host and the device is still required

“Work done while he was associated at The University of Manchester.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

MPLR °23, October 22, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0380-5/23/10.
https://doi.org/10.1145/3617651.3622984

sandhya.viswanathan@intel.com

United States

christos.kotselidis@manchester.ac.uk
The University of Manchester
United Kingdom

to ensure data consistency- we enable transparent page mi-
gration of Java heap-allocated objects between the host and
the accelerator, since our UM system is aware of pointers
and object migration due to GC collections. This technique
has been implemented in the context of MaxineVM, an open
source research VM for Java written in Java. We evaluated
our approach on a discrete and an integrated GPU, showcas-
ing under which conditions UM can benefit execution across
different benchmarks and configurations. We concluded that
when hardware acceleration is not employed, UM does not
pose significant overheads unless memory intensive work-
loads are encountered which can exhibit up to 12% (worst
case) and 2% (average) slowdowns. In addition, if hardware
acceleration is used, UM can achieve up to 9.3x speedup com-
pared to the non-UM baseline implementation for integrated
GPUs.

CCS Concepts: - Computing methodologies — Parallel
programming languages; - Software and its engineer-
ing — Just-in-time compilers; Runtime environments.

Keywords: CUDA, Data Transfers, GPUs, JVM, LevelZero,
Memory Management, Unified Memory, Virtual Machines

ACM Reference Format:

Juan Fumero, Florin Blanaru, Athanasios Stratikopoulos, Steve
Dohrmann, Sandhya Viswanathan, and Christos Kotselidis. 2023.
Unified Shared Memory: Friend or Foe? Understanding the Implica-
tions of Unified Memory on Managed Heaps. In Proceedings of the
20th ACM SIGPLAN International Conference on Managed Program-
ming Languages and Runtimes (MPLR °23), October 22, 2023, Cascais,
Portugal. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3617651.3622984

1 Introduction

Heterogeneous hardware has become ubiquitous and is pre-
sent in almost every modern computing system. However,
supporting fully automatic heterogeneous hardware execu-
tion from managed languages still has several unresolved

https://doi.org/10.1145/3617651.3622984
https://doi.org/10.1145/3617651.3622984
https://doi.org/10.1145/3617651.3622984

MPLR ’23, October 22, 2023, Cascais, Portugal

challenges due to the following reasons: i) parallelism iden-
tification: how to represent and identify parallel programs
that can run on many types of hardware accelerators such as
GPUs and FPGAs; ii) runtime compilation: how to compile
high-level programs to accelerator-compatible bare-metal
code while achieving high-performance; iii) data manage-
ment: how to efficiently manage memory between the Vir-
tual Machine (VM) and the accelerator’s memory. The latter
involves avoiding data marshaling and unmarshaling be-
tween host memory buffers (e.g., Java heap objects) and
device memory buffers (e.g., data buffers on the accelerator’s
memory). In addition, the Garbage Collector (GC) may col-
lect and move buffers and objects from different memory
regions while the accelerator is executing the parallel code
resulting in segmentation faults.

The first two challenges have been well-researched dur-
ing the last decade with a plethora of programming mod-
els [14], Application Programming Interfaces (APIs) and
frameworks [7, 15, 18, 20, 21, 32, 35, 48, 54, 55] having been
introduced for various programming languages. Amongst
said solutions, different levels of integrations exist ranging
from Just-In-Time (JIT) compilation of high level program-
ming languages [17, 19, 21, 28, 56] to heterogeneous code
via external invocations of pre-built binaries [8, 25, 43].

Data management is a more challenging topic because,
regardless of the quality of a JIT compiler, if the memory
manager is not optimized, it is very difficult to achieve high
end-to-end performance by using hardware accelerators;
even for applications perfectly suitable for acceleration. Al-
though there are some works focused on improving data
management [18], the question of how the memory allocator
and GC of a VM can interact with the accelerators’ memories is
hardly researched. For example, even state-of-the-art paral-
lel programming frameworks for Java, such as Aparapi [17]
and TornadoVM [11, 19], might fail if the GC collects objects
while the parallel application is running on the accelerator.

This paper focuses on the memory management of man-
aged runtime systems and heterogeneous programming mod-
els by taking advantage of the Unified Memory (UM) of
modern computing systems. Note that NVIDIA uses the term
Unified Memory while Intel uses the term Unified Shared
Memory. For consistency, in this paper we use the term Uni-
fied Memory (UM) for both Intel and NVIDIA systems.

We propose a technique to allocate the Java heap on the
UM of integrated and discrete GPUs. With the proposed
scheme, when GPU buffers are allocated in UM, the dri-
ver can automatically migrate memory pages from the host
(CPU) to the device memory and vice-versa under demand.
This enables the seamless interoperability of the hardware
accelerator with the VM runtime and its GCs. The outcome
of this research is to provide valid execution in which the
managed runtime systems can safely execute programs on
hardware accelerators without any memory corruption when
the GC collects and moves memory segments.

J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan, and C. Kotselidis

By enabling seamless interoperability during GC cycles,
the only remaining task that developers must do is to ensure
data consistency between the host and the accelerator. We
propose to perform this sync point during safepoint polls
before Stop-The-World (STW) GC cycles. We prototyped
our solution in MaxineVM [30, 52], a research VM for Java
written in Java. Regarding parallel programming models for
GPUs, we experimented with NVIDIA CUDA [50], and Intel
Level Zero [26], which allow running programs on both
discrete and integrated GPUs. Despite the selected platforms,
all techniques presented in this paper can be implemented
for other VMs, such as the JVM and .NET.

To summarize, the contributions of this paper are:

o It proposes anovel technique that allows managed runtime
systems to allocate Java objects on a shared memory space
between the CPU and the accelerators. Due to automatic
page migration, we demonstrate that this technique can
work in combination with common GCs.

o It presents an implementation prototyped in the context
of MaxineVM that has been extended to support UM for
discrete and integrated GPUs with two different parallel
programming models (CUDA and Level Zero).

o It studies the effects of Unified Memory on managed work-
loads, even if hardware acceleration is not invoked reveal-
ing a potential overhead of up to 12% in the worst case.

o It performs a detailed performance evaluation of the whole
system across different GPU workloads and configurations.
We show that our UM system can achieve speedup of up to
9.3x on integrated GPUs compared to the non-UM baseline
implementation.

2 Background

This section provides the background on MaxineVM, CUDA,
Level Zero and Unified Memory.

2.1 MaxineVM Overview

Our work is prototyped as an extension to MaxineVM [31,
52]. MaxineVM is a virtual machine implementation for Java
that is compatible with the standard Java Development Kit
(JDK). It features a modular architecture that permits al-
ternative implementations of subsystems, such as GC and
compilation to be plugged in.

Since MaxineVM is mostly implemented in Java, it facili-
tates prototyping of new ideas and research directions for
VMs and new hardware. The substrate implements the native
launcher and encapsulates, in a platform-independent API,
the native services from the Operating System, e.g., virtual
memory operation, and signal handling.

Memory Handling within MaxineVM. The Java compo-
nents of MaxineVM are architected around a set of compo-
nents that collaborate via public interfaces that correspond
to schemes. One particular scheme relevant to this work is the
Heap-Scheme, that configures how objects (data) and code

Unified Shared Memory: Friend or Foe?

are allocated and managed during GC. In the current default
configuration of MaxineVM, application code is allocated in
a heap called the code cache while application objects are
allocated in a separate heap. MaxineVM supports different
GC implementations with varying degrees of maturity. In
the context of this work, we use the single threaded stop-
the-world semi-space collector [29], since we are interested
in the worst case scenario and overheads that UM may re-
sult. In the SemiSpace heap scheme, upon VM startup, two
continuous regions of memory that constitute the object
heap are allocated. At runtime, the mutator threads allocate
objects in a single region of memory at a time. Upon GC,
all mutator threads are stopped, and a single thread (the GC
thread) traverses the object graph and marks the root ob-
jects. Next, the live objects are copied to the other memory
region following Cheney’s algorithm [9]. After all objects
are copied, the previously used memory region is marked
as empty and all new allocations will be performed in the
region where the objects have been copied to. Consequently,
the mutator threads resume execution.

2.2 CUDA and GPU Unified Memory

CUDA [50] is a parallel programming framework and an ap-
plication programming interface (API) for parallel program-
ming on NVIDIA GPUs. CUDA allows applications written
in C/C++ to accelerate certain types of workloads by exploit-
ing GPU resources, achieving high-performance compared
to multi-threaded CPU execution.

GPU Programming Model. In a nutshell, the way GPU
applications are executed with CUDA is as follows: devel-
opers need to allocate the data on the CPU’s and the GPU’s
memories, perform a data transfer from the host (CPU) to
the device (GPU), launch the compute-kernels on the GPU,
wait for the kernels to finish, and copy the results back from
the GPU’s main memory to the CPU’s memory. Prior to
the introduction of unified memory, developers needed to
manually handle data copying and consistency between the
host and the devices. In the Java world, however, some sys-
tems such as Aparapi [17], TornadoVM [12], and IBM J9[28]
could assist developers in performing these actions in a trans-
parent manner. Nevertheless, developers today can utilize
unified memory or not, or even have a combination of the
two techniques.

Unified Memory. CUDA UM is a feature that allows devel-
opers to have a single memory address space view between
CPUs and GPUs [57]. To achieve that, data migration is auto-
matically handled by the GPU driver which migrates memory
pages between the host and device under demand. This fea-
ture enhances GPU programmability because there are no
explicit copies between the different memory systems, as it
facilitates management of memory by providing a single and
consistent view of the host and device memories. UM became
available from CUDA version 6, and it was fully implemented

MPLR °23, October 22, 2023, Cascais, Portugal

cores CPU

Automatic Page Migration between CPU <> GPU
Figure 1. High-level representation of a Unified Memory
System for integrated and discrete GPUs.

(1) Access Request

from the GPU
GPU —> GPU —> CPU

(2) Page fault (3) Allocate New Pages (4) Unmap old CPU Pages

CPU [GPU [— GPU

(7) Free CPU pages

Figure 2. Page-fault Mechanism in CUDA Unified Memory.

(6) Map new pages (5) Data Migration

in the NVIDIA Pascal micro-architecture [37]. Please note
that unified memory is different from zero-copy [49].

Figure 1 shows a high-level representation of CPU and
GPU hardware architectures, and how UM can be transpar-
ently managed by the driver via memory page migration. As
shown, the CPU has a set of compute-cores, an integrated
GPU, and a Last Level Cache (LLC) shared between them.
Applications run on the CPU and both code and data are
loaded onto the main RAM memory. Since the unified mem-
ory is also accessible from discrete GPUs, such as NVIDIA
and Intel integrated GPUs, pointers can be also shared be-
tween the main host and the GPU memory, as we can see in
the right-hand side of Figure 1.

GPU memory page migration. Figure 2 shows the steps
of handling a page fault when the GPU attempts to access a
page that resides on a CPU. When a memory page that is not
mapped to a physical address on the current device (CPU
or GPU) is accessed, a page fault is triggered. In step 1, the
GPU tries to access a memory position that has not been yet
mapped to a physical memory address. Thus, a page fault is
generated (step 2). The page fault provokes the GPU driver to
allocate new physical pages for the requested memory access
(step 3). Then, the CPU must unmap the page associated with
the memory request (step 4) and perform data migration from
the CPU’s memory to the GPU’s memory (step 5). Once the
data transfer has been completed, the GPU driver maps the
new pages to the GPU’s memory (step 6). Finally, the GPU
driver frees the memory page at the CPU side (step 7).

Resolving a page fault can have high overhead, and there-
fore, decrease significantly the system performance when the
same memory pages are accessed by the CPU and GPU [33].
In addition, the massive parallelism of GPUs further exacer-
bates the page fault overhead. This occurs because process-
ing stalls while page faults are being resolved, and multiple
threads in different warps accessing the same page can cause
multiple duplicated faults [49].

MPLR ’23, October 22, 2023, Cascais, Portugal

2.3 Intel Level Zero and Unified Memory

Level Zero [26] is an APl initiated by Intel as part of the Intel
oneAPI [27] software ecosystem for CPU, GPU, and FPGA
parallel programming. In contrast to CUDA, the oneAPI pro-
gramming model implements the SYCL standard for C++.
This allows programmers to write standard C++ programs
(without any extensions) in the same source files that the
main C++ programs are located. Level Zero fits into the
oneAPI stack as a driver connector (or resource manager)
between the software runtime and the actual hardware, and
it can be used as a standalone API for other applications.

Similarly to CUDA, Level Zero offers a Unified Memory
API for memory types with which programmers can allocate
buffers in a common memory region between the CPUs and
the GPUs. Since Level Zero is a more generic programming
framework for accelerator resources, it works in different
ways depending on the type of the accelerator. For shared
memory devices (e.g., an Intel integrated GPU that shares
memory with the main CPU), the advantage of using UM
is that there is no memory copy (truly zero-copy) between
the host and the device. For discrete accelerators (those that
have their own memory pool, such as discrete GPUs) the
Level Zero driver automatically migrates the memory pages
between the CPU and the GPU and vice-versa when they are
requested, simplifying memory management. This behaviour
is almost identical to the CUDA UM for discrete NVIDIA
GPUs that we described in Section 2.2.

Research Gap. Our work makes use of the CUDA UM and
Level Zero UM to allocate a shared memory Java heap with
the goal of having shared pointers that can be migrated under
demand by the GPU driver. During a GC cycle, GPU pages
can be automatically reclaimed by the CPU. In turn, the CPU
performs the GC and continues execution without having to
lock the GC while the application is running. It is important
to note, however, that although the GC can work in tandem
with the processing on the GPU, the shared pointers between
the CPU and the GPU can creates race conditions. It is up
to the developer to ensure memory consistency by adding
sync points that block the GC during the syncing phase. In
this work, we integrate a GPU synchronization point before
performing a GC within the VM. Thus, our solution is fully
transparent to programmers. In the rest of the paper we
showcase our approach and we analyze the performance on
discrete and integrated GPUs.

3 UM for Managed Runtime Systems

Our technique has been developed for two implementations
and setups: one for discrete NVIDIA GPUs and one for Intel
integrated GPUs. The implementation for the NVIDIA GPUs
utilizes the CUDA driver API [13], while the implementa-
tion for the integrated GPUs uses the Level Zero API [26].
The technique used to accommodate MaxineVM for Level
Zero UM represents a more generic approach which can be
applicable to other parallel programming models, such as

J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan, and C. Kotselidis

RAM

Device Global Memory

Eﬂ@*:le

[float] |[float]] |

Java Heap

Figure 3. Example of a program workflow of CUD-
A/LevelZero interaction with the Java memory management.

RAM
Device Global Memory
[floatl | [float] | %
Unified Memory: Heap

Figure 4. Program workflow using UM as Java heap space.

SYCL [24] and OpenCL [23]. The reason is that all these pro-
gramming models operate in a similar manner, and there is a
number of data structures (e.g., GPU command queues) that
can be mapped to all of them. Thus, the potential accommo-
dation of multiple heterogeneous programming models (and
not only CUDA), makes the VM design suitable for target-
ing not only NVIDIA GPUs but also any type of hardware
accelerators from various vendors.

3.1 System Overview

Figure 3 shows an example of a typical program workflow in
Java that uses a GPU as an accelerator (without using UM).
The example uses two float arrays as input/output data.
The figure also highlights the main steps that involve the
buffer allocation and data transfers between the Java heap
and the device heap when UM is not used.

The usual workflow is as follows: in step @) , programmers
allocate the data using the Java constructors (new). This data
is kept on the Java heap that resides in the CPU’s main
memory. Then, developers need to allocate the device buffers
(step @) for each buffer to be used on the target GPU. Once
the buffers have been allocated, developers need to perform
a data transfer from the Java heap to the device (step €),
launch the kernel functions, and finally obtain the results by
moving the data from the GPU’s global memory to the Java
heap (step @)). Note that, only when the data transfer has
finished, the GPU kernel can be launched.

MaxineVM reserves virtual memory for the JVM heap
by invoking the Operating System (OS) calls to the POSIX-
compliant function mmap. In our approach, instead of calling
the mmap function, we allocate the Java heap using the cor-
responding API for Unified Memory (cudaMallocManaged,
in the case of the CUDA driver API, and zeMemAllocShared
in the case of the Level Zero API). This allows user appli-
cations to directly use the Java arrays and buffers without
the need of performing data marshaling, unmarshaling, and
explicit data transfers.

Figure 4 shows a representation of a common workflow
using our approach. Data is allocated using the usual Java

Unified Shared Memory: Friend or Foe?

constructors. Since the Java heap has been allocated using
the Unified Memory functions, all pointers to that data are
also accessible from the device (step @) from Figure 4). Then,
developers can directly invoke the compute-kernels on the
accelerators without the need of marshaling, or performing
any data transfers between the Java heap and the device’s
global memory. The corresponding GPU/Accelerator drivers
will take care of memory page migration during runtime
(steps @ and @)) under demand. Furthermore, only the
data that is needed will be transferred while the GPU kernel

can still run.
System Components Overview. Figure 5 shows how ap-

plications interact with the VM to gain native access to the
unified memory space. The JVM exposes a set of accelera-
tor interfaces (what we call XPU Interfaces) to programmers.
These interfaces contain the minimum set of parameters for
resource instantiation that programmers need to define for
using the UM. In general, depending on the parallel pro-
gramming model used to access GPUs and heterogeneous
hardware, allocations of memory regions in the unified mem-
ory may require access to other resources, such as a driver,
device and command queue objects.

Furthermore, although the Java heap is allocated using UM
with CUDA or Level Zero, programmers do not necessarily
have to run on heterogeneous hardware. Thus, it is possible
to use UM space and still run typical workloads on CPUs, as
we will show in Section 4.

3.2 Enabling Unified Memory within MaxineVM

We extended the MaxineVM implementation to perform calls
to the CUDA runtime and allocate UM when the Java heap
is allocated. To achieve that, the C substrate of MaxineVM
has been extended. Our extensions include two new native
functions (allocateCUDA and deallocateCUDA) which are
called from the Semi Space Heap scheme within MaxineVM.

The allocateCUDA function internally invokes the cud-
aMallocManaged function from the CUDA Driver API, and
it returns an address that points to the start of the allocated
unified memory region. Similarly, the deallocateCUDA func-
tion invokes the CUDA cudaFree API function and returns
the status code of the deallocation process.

To enable UM in Intel Integrated Graphics, we took a
similar approach by calling the shared memory buffer allo-
cation functions zeMemAllocShared and zeMemFree respec-
tively. The main difference is that, for Intel Integrated GPUs,
the shared memory resides in the same space as the host
memory (main CPU’s memory), and the memory page mi-
gration is not actually performed.

3.3 XPU Interface

Apart from the buffer pointers (either CUDA or Level Zero
UM pointers), the VM also needs to keep some GPU objects,
such as a context-id, device-id and driver-id objects. In our

implementation, we also provide a synchronization point
over the GPU command stream (a GPU object that is used to

MPLR °23, October 22, 2023, Cascais, Portugal

User Applications

XPU Interfaces
VM Runtime

| CPU H accelerators ‘

Figure 5. System overview of how applications can use
heterogeneous resources with our approach.

submit commands, such as kernel launch and synchroniza-
tion points) before a GC is invoked. This is because, while
UM memory simplifies the GPU execution, it does not pre-
vent the GC to run while the GPU application is still running.
UM memory allows this to happen without the VM to raise
a segmentation fault.

However, as any other shared resource in concurrent and
parallel programming, the VM needs to flush the pending
commands from the GPUs’s command queue to obtain the
correct behavior. In our implementation, we provide this
functionality automatically, by enabling the VM to access
the execution context and the GPU command queues. Thus,
a new data structure is shared between the VM and the ap-
plication code called XPU Interface. With this approach, user
applications directly share and query GPU resources from
the VM using the XPU Interface, and launch GPU kernels
using a native interface (e.g., JCUDA).

We provide, as a proof-of-concept, our own native GPU
code dispatcher in JNI. When the JNI code for launching
the kernels sets the parameters for the CUDA or Level Zero
kernels, it directly passes pointers that are obtained from
the JNI call (without any data transformation or previous
memory allocation). This is only possible because the heap
is allocated using UM. As follows, we will define the XPU
Interface data structure, and how programs interacts with it.

Interacting with the XPU Interface. The design of the
XPU Interface represents a generic approach to use UM be-
tween CPUs and GPUs, and it accommodates both CUDA
and Level Zero heterogeneous programming models. For
one side, the CUDA implementation only needs to share a
context object (a GPU context is an object that handles the
execution on heterogeneous devices, which is linked to a de-
vice and a driver implementation and it is needed to perform,
for instance, synchronization operations).

On the other side, synchronization in Level Zero is per-
formed through two objects, called command queue and
command list. Instead, the context in Level Zero is used by
client applications to build SPIR-V modules'. Thus, the Level
Zero implementation represents a more generic approach,
and similar to other parallel programming models such as
OpenCL [23], AMD HIP [3], and Intel oneAPI [27].

ISPIR-V is a standard common binary intermediate representation for
compute-kernels and graphics for hardware accelerators.

MPLR ’23, October 22, 2023, Cascais, Portugal

Listing 1. XPU Java interface provided by the VM.

1 public interface XPU_Interface {

2 long getDriver(int heapSpacelndex);

3 long getDevice(int heapSpacelndex);

4 long getContext(int heapSpaceIndex);
5 long getCmdQueue(int heapSpacelIndex);
6 long getCmdList(int heapSpaceIndex);
7

Listing 2. XPU Implementation by the VM.

1 public class VM_XPUImpl implements XPU_Interface {
2 public static VM_XPUImpl getInstance() {...}

3 public Pointer getDriver(int index) {...}

4 public Pointer getDevice(int index) {...}

5 public Pointer getContext(int index) {...}

6 public Pointer getCmdQueue(int index) {...}

7 public Pointer getCmdList(int index) {...}

8 }

During the VM’s bootstrap, the VM allocates, and initial-
izes the Java heap, and it prepares the VM to start running
applications on GPUs. At this time, MaxineVM obtains the
driver, device, context and command queue/list objects the
CUDA and Level Zero APIs. Consequently, MaxineVM stores
all of these pointers in a class that will be exposed to user
applications.

Listing 1 shows the XPU Java interface that MaxineVM
exposes to the user. This interface represents the basic func-
tionality to be used by applications. Through this interface,
applications that aim to run on GPUs with UM can obtain
the driver object (native pointer), the device object, and the
context that are associated to a particular heap space. Since
MaxineVM uses a single memory region for the heap, we
only use one space in our implementation. However, this
approach can be extended to use multiple Java heaps and
select the correct space by using a heap index. Besides, each
heap index can be associated to a different accelerator (e.g.,
a different GPU). The VM exposes an implementation of this
interface through a singleton class, as shown in Listing 2.

Using the XPU Interface. The communication with the
XPU Inteface is done through the singleton class exposed
by the VM. Listing 3 shows a sketch of a user code example
implemented in Java that invokes the XPUImp1l singleton class.
The application imports the new utility from the core set of
Java APIs. Line 3 invokes the XPU singleton interface to get
the xpu reference from the VM. Then, in line 6-8 we invoke
the getContext to obtain the raw pointer of the context,
device and command list associated with the first heap space.
From this point of the execution, the user application can
launch kernel on the GPU, add sychronization points, etc.

Improving hardware resources through the XPU In-
terface. Executing on heterogeneous hardware through the
XPU interface enables the VM to control hardware resources.
By invoking this interface, the VM can track all compute

J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan, and C. Kotselidis

Listing 3. Example of XPUImpl usage by applications.

1 public import jdk.VM_XPUImpl;

2 public class Sample {

3 VM_XPUImpl xpu = VM_XPUImpl.getInstance();
4 void doSomethingOnGPU() {

5 // Query GPU shared objects

6 Pointer context = xpu.getContext(0);

7 Pointer device = xpu.getDevice(0);

8 Pointer cmdList = xpu.getCmdList(0);

9

10 1}

kernels that want to access GPUs for acceleration and hence,
it can implement resource management to improve the per-
formance of the whole system.

But, why is the XPU-Interface needed? 1t is important
to understand why the XPU Interface is needed when shared
memory is used. For the majority of heterogeneous program-
ming models, in order to invoke kernels, perform synchro-
nization points, and attach events, a device pointer, command
queue and command lists are needed. From one side, the VM
process also needs these objects to guarantee consistency
and flush command queues, for example, before invoking
the GC. From the other side, applications also need these
pointers to communicate and run kernels on the target ac-
celerator.

To expand on this, Figure 6 shows an example in the con-
text of Level Zero about how applications are executed on
a GPU when using UM to allocate the Java heap. The fig-
ure is divided into two parts: the top part represents the
compilation workflow from OpenCL to SPIR-V. This step
is performed ahead-of-time by the user. As an example, for
this step, developers can use clang [44]/LLVM [34] compiler
and its 1lvm-spirv utility to transform the OpenCL C into
a SPIR-V binary modules.

The bottom part of the figure shows the execution work-
flow to run on GPUs using XPU interface with Level Zero.
The user application must use the same command list and
queue objects that were associated with a device from the
VM side at bootstrap. Thus, developers can orchestrate the
entire Level Zero application needed to launch GPU kernels.

GC interactions. As already mentioned, although UM
allows the GC to operate while the GPU is processing heap
data, race conditions on the buffers shared between the
host and the device may occur. Hence, in order to guar-
antee memory consistency developers must sync the data
between the CPU and the GPU, after the GPU finishes pro-
cessing. This can be achieved either by an explicit call to
the CUDA function cuCtxSynchronize or the Level Zero
function zeCommandQueueSynchronize.

We opted for a different approach by triggering these calls
upon safepoint polls. Every time a GC is being invoked and
the safepoints are being polled, a call to the CUDA context

Unified Shared Memory: Friend or Foe?

; SPIR-V
__kernel void saxpy(__global float* alpha, _global float* x, ; Version: 1.0
__global float* y, __global int* size) { . 5 Generator: Khronos LLVM/SPIR-V
uint tid = get_global_id(@); 11lvm-spirV | Translator; 14
if (tid < size[6]) { ; Bound: 33
y[tid] = alpha[e] * x[tid]; ; Schema: @
OpCapability Addresses
} OpCapability Linkage
OpCapability Kernel

clang
&

OpenCL to SPIR-V: Compilation ahead of time

|
P SPIR-V Module

)
SPIR-V Kernel

Device
]\
A\

- Context v
Command List “

' Kernel Launch
[omians 1

Figure 6. Execution Workflow to run SPIR-V applications in
the context of Level Zero on Intel HD Graphics with Max-
ineVM.

Get Instance XPU Impl

VM XPU Interface Client Programs with USM

synchronize or Level Zero command queue synchronization
functions is performed to synchronize the shared memory
buffers between the GPU and the CPU. As a side note, the
Level Zero synchronization point also needs to close the
command lists before the synchronization point, and it re-
sets the list afterwards. This approach allows to have a full
consistent view of the UM memory between the Java heap
and the accelerators, without relying on the user to add these
synchronization points.

Note that our work does not aim to improve GC perfor-
mance. Instead, this paper shows the potential of using UM
as a Java heap to reduce redundant copies of data between
Java and JNI for offloading computations on the GPUs (using
shared pointers between Java memory objects and the GPU
memory). The employment of UM enables GC to be trig-
gered while the GPU runs applications without provoking
segmentation faults. The sync point is needed to guaran-
tee consistency since the GPU is a shared resource (similar
to other concurrent programming models). Thus, our work
solves these two issues with: a) GC-aware command queues
for internally blocking GC tasks while the GPU runs kernels
using the same memory buffers without segmentation faults;
b) simplification of native code that dispatches the GPU code,
because pointers are shared.

3.4 Case scenarios

Our paper aims to perform a worst case performance analysis
in order to expose any significant drawbacks that UM might
have on typical execution scenarios. To that end, we devised
three different scenarios that aim to represent how users
might typically use hardware acceleration within a managed
runtime environment. Table 1 shows the three scenarios that
we used to evaluate our approach in Section 4.

Allocate Always. In this scenario, data is always being
newly allocated before every kernel launch. This scenario
aims to represent hardware acceleration in a streaming fash-
ion where there is no data reuse between different kernel
launches. In this case, since we create new data before launch-
ing a kernel, we guarantee that the GPU driver, on discrete

MPLR °23, October 22, 2023, Cascais, Portugal

Table 1. Different scenarios using UM as a Java heap.

Name Scenario | Behavior
mode
AA Allocate | Datais newly allocated every time on the CPU.

Always Thus, page faults are generated every time the
GPU kernel runs.

AOGC Allocate Data is allocated once, but an explicit GC is
once with | invoked every time a GPU kernel is launched.
GC Thus, pages will be migrated back and forth

between the CPU and the GPU.

AO- Allocate | Data is allocated once and there is no GC.

NOGC scenarios | Thus, data is not reclaimed at the host side
once with | and there is only one data transfer from the
no GC host to the device.

GPUs, will always perform memory page migration from
the host to the device. In the case of integrated GPUs, there
is no page migration. Furthermore, when the application is
executed multiple times on the GPU, since new data is being
allocated, it can trigger a GC on the host side. In addition,
the application can result to oversubscription [51] on the
device side, which provokes memory pages to migrate back
and forth between the host and the device.

Allocate Once with GC. In this scenario, data is allocated
only once during the first kernel invocation. After that, data
is being reused between kernel launches. In addition, we
force a GC at the host side between kernel launches. Since
we use a SemiSpace collector, this will result to a full heap
GC, which will provoke page faults if the memory pages
are not present on the CPU. With this scenario we aim to
understand the implications of a full GC on UM, specifically
when the CPU and GPU share pre-existing data (in contrast
to the Allocate Always where we always allocate new data
before running on the GPU). Note that, in this case, the GPU
can still be running the compute-kernels, while a GC is be-
ing triggered. Since the memory is a shared resource, to
guarantee correct results, the VM must perform a synchro-
nization point to wait for the GPU to finish the kernel before
performing the full GC.

Allocate Once without a GC. This scenario is similar to
the previous one with the omission of GC. Again, we allocate
data only once (before the first kernel launch), and then we
reuse it across different subsequent operations. In addition,
since we guarantee no GC to occur in-between, we maximize
data reuse and attempt to minimize page faults. This scenario
represents the best case where there should be few page
migrations triggered. In a general GPU workflow, this case
is quite unlikely to happen since the results computed by
the GPU will probably be consumed by the host.

4 Experimental Evaluation

This section presents the evaluation of the proposed tech-
nique of exploiting UM in Java. We first describe the setup
and benchmarks, and then we discuss the performance re-
sults with a detailed analysis.

MPLR ’23, October 22, 2023, Cascais, Portugal

Table 2. Hardware/Software testbed characteristics.

CPU Intel Core i7-12700K
Hyper-Threading Disabled

Main Memory 32 GB

NVIDIA GPU NVIDIA GeForce GTX 3070
NVIDIA GPU RAM 8 GB

Intel Graphics/RAM Intel(R) UHD Graphics 770
PCle Gen 4 (16 lanes enabled)
JVM MaxineVM

JVM Heap Size 25 GB

oS openSUSE Leap 15.4 - 5.14.21-150400
CUDA Driver 515.76

Level-Zero Driver 22.23.23405

Table 3. Applications and data sizes used.

‘ Benchmark ‘ Small (MB) ‘ Large (MB) ‘
Saxpy, WC, BW, HB, MC, BS 128 4096
DFT 0.01 0.5
NBODY 0.05 1

4.1 Experimental Setup

We selected a set of kernels commonly used for GPU ac-
celeration from different domains, such as linear algebra,
physics simulation, and Fintech. The benchmarks were se-
lected based on three characteristics: a) a group of low-
compute and high-bandwidth to exercise the worst case
scenarios in which a lot of data must be transferred to the
GPU to compute a few operations per thread; namely, saxpy,
writeConstant (WC); b) a group of benchmarks in which data
transfers and compute are more balanced, namely black and
white (BW) which transforms an RGB image to monochrome,
montecarlo (MC) simulation, Hilbert (HB) computation, and
black-scholes (BS); c) a group of benchmarks for compute-
bound [42] and low communication between the CPU and
GPU, namely Discrete Fourier Transform (DFT), and N-Body
(NB) simulations. The compute-bound kernels were ported
from C++ using CUDA and OpenCL from the AMD SDK [2]
and NVIDIA CUDA SDK [38].

Methodology. Table 2 presents the specifications of our
testbed along with the configuration of the JVM that we used
to run all benchmarks. For each experiment, we performed a
warm-up phase that includes 10 executions. After the warm-
up phase, we execute the benchmarks 15 times and report
the average execution time. The same Java process runs for
all 25 iterations. This methodology is by design to provide
more accurate and reliable results. Besides, it mimics more
realistic workloads in which the GPU can be used under
demand for long-running applications multiple times, not
just for a single kernel.

Table 3 details the two input sizes (small and large) used for
each benchmark. Note that we run with a maximum number
of 4GB. This is because, as we compare against GPU pro-
grams using device memory, we are limited to the maximum
memory we can allocate on the device, which, in practice,
(for Intel architectures) it is less than the maximum physical
memory, due to reserved space for the GPU driver. Thus, to

J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan, and C. Kotselidis

Table 4. Speedup of UM for the Renaissance Benchmarks
compared to unmodified MaxineVM without UM.
‘ Benchmark ‘ CUDA ‘ Level Zero ‘

akka-uct 0.88 1
db-shootout 0.96 0.99
dotty 0.95 1.02
fj-kmeans 1.08 1
future-genetic 0.99 0.99
mnemonics 0.96 0.99
par-mnemonics 0.97 0.98
philosophers 1.01 0.98
reactors 0.99 0.99
rx-scrabble 1 0.99
scala-doku 1.01 0.99
scala-kmeans 0.97 0.99
scala-stm-bench7 | 0.97 1.03
scrabble 1.13 1.03

[Geomean [0989 [0997 |

easy compare in the future with discrete Intel GPUs, we kept
4GB as maximum size.

Each benchmark was executed with two implementations:
a) the equivalent code expressed in CUDA dispatched through
the CUDA Driver API to run on a discrete NVIDIA GPU;
and b) the equivalent SPIR-V binary code compiled with
LLVM [34] from the OpenCL source code, and dispatched
through the Level Zero API to run on the Intel integrated
GPU. Besides, we analyze the best and worst case scenarios
using the different configurations described in Table 1.

Note that our work does not compare MaxineVM versus
other mainstream VMs, such as OpenJDK. Other work has al-
ready analyzed such comparison [31]. Instead, we compared
our approach using both GPU code (as baseline as well as
enabling UM). In the case of the performance on CPUs, we
compared with MaxineVM for both UM and without UM.

4.2 Performance on CPUs

First, we analyze if there is any performance penalty of using
UM when the GPU is not used. To answer this question, we
executed the DaCapo [6] and Renaissance [45] benchmark
suites on the CPU using UM in CUDA and Level Zero. Then
we compared the results against unmodified MaxineVM runs
that do not use UM. Tables 4 and 5 show the performance
results of each benchmark for Renaissance and DaCapo nor-
malized to the execution without UM (> 1 is speedup).

In general, we observe two trends. The first one is that
UM with Level Zero poses less overhead compared to the
CUDA implementation. Results indicate that when running
with Level Zero UM, we observe on average the same per-
formance compared to the runs that do not use UM. On
the contrary, we notice that CUDA UM results in almost
consistent performance degradations for both benchmark
suites (2-3% on average). This difference is attributed to the
different underlying implementations of the two drivers.

Note that, although some benchmarks show small speedups
(e.g., scrabble/fj-kmeans benchmarks) we do not consider

Unified Shared Memory: Friend or Foe?

Table 5. Speedup of UM for the DaCapo Benchmarks com-
pared to unmodified MaxineVM without UM.
‘ Benchmark ‘ CUDA UM ‘ Level Zero UM ‘

avrora 1.011 1.003
eclipse 0.977 1
fop 0.973 0.998
h2 0.95 0.996
jython 0.989 0.995
luindex 1.011 1.016
lusearch 1.009 1.032
pmd 0.972 1
sunflow 1.007 1.028
xalan 0.984 0.998
[Geomean | 0988 | 1.006 |

this number to provide significant proof of speedup. This is
because there are many software layers that can influence
performance [30, 47], even if we run multiple iterations. In-
stead, what this demonstrates is that when using UM and
the program does not use a GPU, the application does not
slowdown.

The second trend is that the discrete GPU using UM ex-
hibits its worst performance in a certain application of the
Renaissance suite; namely, akka-uct. This particular bench-
marks is significantly more memory intensive compared to
the rest [41], and hence any additional overheads of the UM
library implementations are further exacerbated. From our
results, we conclude that for non memory-intensive work-
loads there is no significant overhead when utilizing UM.
However, for memory-intensive workloads, the overheads
can exceed 12% in the case of CUDA UM for discrete GPUs.

4.3 Performance on GPUs

The second set of experiments examines the effects of UM
when GPU hardware acceleration is utilized. First, we pro-
vide a detailed analysis of the performance obtained with our
approach compared to GPU acceleration without using UM.
Consequently, we evaluate the GPU memory page faults.

4.3.1 End-2-End GPU Performance. Figure 7 shows the
performance of the GPU accelerated applications when UM
is employed normalized to the non-UM executions (baseline)
- values over one denote a speedup of UM. The baseline im-
plementation sends data to the GPU upfront by using the
cuda copy functions (cudaMemcpyHostToDevice CUDA com-
mand). By the time the GPU kernel starts running, all data
has already been transferred to the GPU’s global memory.
In the case of UM, the GPU kernel can start running with-
out the data being transferred to the GPU’s global memory.
Then, the CUDA (or the GPU) driver will page fault for every
memory page that is missing during execution of the ker-
nel. The same memory page fault can be initiated by many
threads concurrently as stated by NVIDIA [49]. Similarly to
the copy-in, the baseline implementation also performs a
copy-out after the kernel has been finished using the CUDA
command cudaMemcpyDeviceToHost, which performs a full
data migration of the data without page faulting.

MPLR °23, October 22, 2023, Cascais, Portugal

For the CUDA implementations with UM (Figure 7,
left two plots), we can clearly observe that in two config-
urations (Alloc-Always and Alloc-Once-GC), UM results in
slowdowns. This is due to the page migrations that these
two configurations pose and the associated overheads when
using the CUDA managed memory (i.e., many concurrent
threads triggering memory page faults and the driver invali-
dating and updating page tables between the CPU and the
GPU) [57]. It is the work of the GPU driver to bring the miss-
ing pages and perform the data transfer needed. This creates
an additional overhead. Thus, depending on the data layout,
and memory access patterns, these overheads can be more
significant. From Figure 7, the BS benchmark is memory in-
tensive, while the DFT and NBODY benchmarks are compute
intensive.

The only configuration that shows a performance bene-
fit compared to the baseline is the Alloc-Once-No-GC. This
is because, in the UM version, there are no memory pages
reclaimed back from the host (CPU), once they have been
migrated to the GPU, while the baseline version always per-
forms an explicit data transfer after the kernel is finished.
Otherwise, the performance would be similar to the base-
line implementation, which performs the data transfer to
the host again®. One benefit of UM, as discussed in Section
3, is that a GC can be invoked in the middle of the GPU
execution, while the version executed for the baseline will
provoke segmentation faults if data is moved. Thus, only the
baseline implementation blocks the GC while the application
is running in order to provide correct behaviour.

For the DFT and NBody benchmarks and the large data sets,
the Alloc-Always mode offer very low performance when
using UM compared to their respective baselines (0.001x).
This is due to the small set of data to be transfered compared
to the computation and the high number of page faults from
the host side, as we will see in Figure 8.

Regarding the Level Zero (L0O) implementation for
the integrated GPU (Figure 7, right), the baseline version
uses device-type buffers. L0 provides three types for UM:
Shared, Host and Device types [26]. In our baseline we se-
lected the device-type, which maximizes memory through-
put within the GPU, and it is the most common type when
programming for GPUs. We notice that the performance
of the UM in the Alloc-Always mode is slightly higher (up
to 9.3x) compared to the one using device memory. This
is because device memory types in Level Zero are owned
by the device, and not by the host (CPU). Thus, although
there is no data migration on an integrated GPU, there is an
explicit copy from one type of buffer (host memory) to the
device memory. The Alloc-Once-GC and Alloc-Once-No-GC

2Note that the performance of data transfers in CUDA using UM can be
further increased by using the memory advise and memory prefetch CUDA
functions, in which the runtime system can provide hints about when a
certain amount of memory pages can be transferred to the device [10, 49].

MPLR ’23, October 22, 2023, Cascais, Portugal

= Alloc-Always

CUDA - Small L (Al Es CUDA - Large

Bl Alloc-Once-No-GC

Speedup of UM vs non UM

Bl Alloc-Always
B Alloc-Once-GC
I Alloc-Once-No-GC

[

J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan, and C. Kotselidis

= Alloc-Always
B Alloc-Once-GC

. Alloc-Always

LO - Small LO - Large = Alloc-Once-GC

I Alloc-Once-No-GC Bl Alloc-Once-No-GC

SAXPY WC BW HB mC BS DFT NBODY SAXPY WC BW BS DFT NBODY SAXPY WC BW BS DFT NBODY SAXPY WC BW BS DFT NBODY

Figure 7. GPU Performance (CUDA for the two on the left-hand side and Intel Level Zero for the two on the right-hand side)
compared to the GPU Accelerated version without shared memory (baseline). The higher, the better.

modes perform slightly better when using UM for memory-
bound benchmarks (saxpy, WC, MC, BW, HB and BS) and
small input sizes. When running with the large sizes, Level
Zero with UM performs up to 0.46x compared to Level Zero
without UM for the Alloc-Once-GC and Alloc-Once-No-GC.
This is due to GPU driver overheads when accessing the
same memory page comparing to dedicated memory on the
GPU (baseline). Regarding the compute-bound benchmarks
(NBody and DFT), the performance of UM is almost the same
as the baseline.

From these results we conclude that using discrete GPUs
for hardware acceleration with UM, the driver might intro-
duces overheads but it simplifies the data management and
it prevents segmentation faults when the GC runs. When
using integrated GPUs, applications are expected to run at
least at the same speed as programs with device memory
for small input sizes, and at the same speed in Alloc-Always
mode.

4.3.2 GPU Memory Page Migrations. We analyze the
number of page faults on both the CPU and GPU, the number
of bytes transferred between them, and their correlation with
the kernel execution time. To achieve that, we used the Nsys
profiling tool for NVIDIA GPUs. Unfortunately, there is no
similar driver tool for Level Zero and Intel integrated GPUs.
Thus, for this particular analysis, we focused on the CUDA
UM on the discrete GPU.

Figure 8 shows the performance results for all the bench-
marks. We report the number of page faults for both the CPU
and the GPU and the number of bytes transferred from the
host to the device and vice-versa.

CPU and GPU Page Faults. The first two bars of each
plot in Figure 8 show the number of memory page faults for
the CPU (first bar) and the GPU (second bar) reported by the
NVIDIA Nsys tool. In general, we observe that the GPU page
faults is 10-20 times higher than the CPU page faults, and
this is consistent across all configurations and benchmarks
used. A GPU memory page fault reported by Nsys means that
the GPU accesses a memory page that resides on the CPU,
and therefore, provokes a memory page migration. This is
because, a memory page fault on the GPU can be originated
from multiple threads, and the GPU driver coordinates and
handles page faults accordingly [49]. A trend we see is that,
for the Alloc-Always (AA), and Alloc-Once-GC (AOGC), the

number of page faults is almost the same. This is due to
memory page replacement since we run the benchmarks
multiple times.

We also see that the mode Alloc-Once-No-GC (AONOGC)
reports less page faults than the other modes. This is because,
as we saw in Figure 7, once the data is transferred from the
first execution, it remains on the GPU.

Data Transfers. We can also relate the number of page
faults with the amount of data being transferred. The last two
bars of each configuration and size from the plot in Figure 8
show the amount of megabytes transferred between the CPU
and the GPU. For the AA (Alloc-Always) configuration, all
data is being transferred to the device, and no data should
be transferred to the host, unless the data is reclaimed again
on the host side. However, we observe that for the large data
size, there is also data being transferred to the host. This
is because not all data fits on the GPU (after all 25 runs -
10 warmup runs plus 15 runs), and the GPU driver applies
page-replacement policies, which transfers data back to the
host to create space in the GPU’s memory. We can see this
effect for the AA configuration between the small and large
data sizes for the saxpy computation. Note that, due to small
sizes used for the DFT and NBody benchmarks, this scenario
is not visible.

For the AOGC configuration, the amount of data to trans-
fer to both sides (host to device and device to host) is exactly
the same. This is because, after the GPU kernel is launched,
an explicit GC is invoked triggering memory page migration
back and forth. Finally, as we discussed in Figure 7, there is
no migration from the host to the device once the kernel is
finished when using the AONOGC mode. This is because the
final results are not claimed back from the host side in these
configurations and benchmarks.

4.3.3 GPU Kernel Runtime. We also study the kernel
execution time for each configuration. Table 6 provides all
kernel execution times for each mode and data size. The
fastest kernel configuration is achieved with the AONOGC,
which transfers the whole data set to the GPU on the first
iteration when the application is executed. This is because,
as soon as data have been migrated to the GPU after the first
GPU execution, there are no memory page faults.

Unified Shared Memory: Friend or Foe?

1.00E+07

1.00E+06

1.00E+05

1.00E+04

1.00E+03

1.00E+02

1.00E+01 I

1.00E+00

AOGC AONOGC AOGC AONOGC

128MB 128MB 128MB 4096MB 4096MB 4096MB
SAXPY SAXPY SAXPY SAXPY SAXPY SAXPY

Total CPU Page Faults ~ mTotal GPU PageFaults ®H->D (MB) ED->H (MB)

1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01 I
1.00E+00
AOGC AONOGC AOGC AONOGC
128MB 128MB 128MB | 4096MB = 4096MB 4096MB
BW BW BW BW BW BW

Total CPU Page Faults M Total GPU PageFaults @H->D (MB) ED->H (MB)

AOGC AONOGC AOGC

1.00E+08
1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01
1.00E+00

128MB 128MB 128MB 4096MB 4096MB
mc mc mc mc mcC mcC

Total CPU Page Faults B Total GPU PageFaults @ H->D (MB) B D->H (MB)

1.00E+04
1.00E+03
1.00E+02
1.00E+01 II II II
1.00E+00 —_— —
AA AOGC AON AOGC AONOGC
1.00£-01 0.01MB 0.01MB | 0.01MB 0.5MB 0.5MB 0.5MB
DFT DFT DFT DFT DFT DFT

Total CPU Page Faults @ Total GPU PageFaults W H->D (MB) W D->H (MB)

AONOGC

4096MB

MPLR ’23, October 22, 2023, Cascais, Portugal

AA AOGC AONOGC AA AOGC

1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01

1.00E+00
AONOGC

128MB 128MB 128MB 4096MB = 4096MB = 4096MB
wc wc wc wc wc wc

Total CPU Page Faults @ Total GPU PageFaults @H->D (MB) W D->H (MB)

AA AOGC | AONOGC AA AOGC AONOGC

1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01

1.00E+00

128MB 128MB 128MB 4096MB = 4096MB = 4096MB
HB HB HB HB HB HB

Total CPU Page Faults @ Total GPU PageFaults @H->D (MB) @D->H (MB)

AA AOGC AONOGC AA AOGC AONOGC

1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01

1.00E+00

128MB 128MB 128MB 4096MB = 4096MB = 4096MB
BS BS BS BS BS BS
Total CPU Page Faults @ Total GPU PageFaults @ H->D (MB) B D->H (MB)
1.00E+05
1.00E+04
1.00E+03
1.00E+02

1.00E+01

AONOGC AA AOGC AONOGC

1.00E+00 Em -

AA AOGC
LOOE01 g o5MmB 0.05MB | 0.05MB | 1MB VB 8
NBODY = NBODY = NBODY & NBODY | NBODY = NBODY

Total CPU Page Faults @ Total GPU PageFaults @ H->D (MB) B D->H (MB)

Figure 8. Profiling metrics reported by the NVIDIA NSys tool for small and large data sizes and the three configurations.

An interesting result is the kernel runtime for both AOGC
and AA configuration modes. With these two modes, the ker-
nel runtimes are almost identical. This is due to the amount of
memory page faults being also identical: for the AA configu-
ration, new pages are migrated for every new execution, and
for the AOGC configuration, the same pages are migrated
back and forth between the CPU and the GPU.

For compute-bound benchmarks (DFT and NBody) the
kernel runtime is almost the same for all modes. This is
because the computation hides the performance penalty of
the memory page-faults and migrations.

4.4 Analyzing GC overheads

Finally, we also evaluated the impact on the GC when using
CUDA and Level Zero UM using the AOGC mode. Figures 9
and 10 show the slowdown of the System.gc() function
call in MaxineVM, which performs a full GC and move all
objects from one semi-space to the other. We measured the
time that takes to run System.gc() for all benchmarks with
a) Unmodified MaxineVM (without UM as the baseline) and
b) with UM enabled for both NVIDIA CUDA and Intel Level
Zero APIs. Due to space limitation, we show the worst case
scenario for the largest data set (4GB). We observe that the
GC can take up to 2.13x more time when running on CUDA

MPLR ’23, October 22, 2023, Cascais, Portugal

Table 6. GPU Kernel Runtime per Mode.
‘ Benchmark ‘ Size ‘ AA (ms) ‘ AOGC (ms) ‘ AONOGC (ms) ‘

Saxpy 128MB 16.055 15.284 0.682
Saxpy 4096MB | 571.437 537.863 16.965
WriteConstant | 128MB 16.98 15.709 0.871
WriteConstant | 4096MB | 534.681 468.986 22.849
BlackAndWhite | 128MB 19.055 17.774 1.217
BlackAndWhite | 4096MB | 612.217 555.206 31.740
Hilbert 128MB 16.782 15.838 0.526
Hilbert 4096MB | 480.353 468.887 11.573
Montecarlo 128MB 17.788 16.453 0.99
Montecarlo 4096MB | 569.769 527.349 26.932
BlackScholes 128MB 16.036 15.062 0.630
BlackScholes 4096MB | 518.642 452.554 16.011
DFT 0.01MB 0.322 0.384 0.303
DFT 0.5MB 39.949 39.836 39.963
NBody 0.05MB 0.372 0.479 0.358
NBody 1MB 11.739 12.440 11.056

22 213 212 208 2.0d™ Alloc-Once-GC

1.05

Slowdown over the accelerated version

DE(SA)(PY’ wc BW HB MC BS
Figure 9. Slowdown of the full GC when CUDA UM com-
pared to the default CPU memory allocator of MaxineVM.
The lower, the better.

DFT NBODY

N Alloc-Once-GC

El

g
=
R

Slowdown over the accelerated version
o o o
g @ g &
. _________________F
I

¢ SAXPY WC BW HB MC BS
Figure 10. Slowdown of the full GC when for Level Zero
UM compared to the default CPU memory allocator of Max-
ineVM. The lower, the better.

DFT NBODY

UM (Figure 9). This is the worst case scenario, in which
the data that corresponds to the GPU execution has already
been migrated to the GPU’s memory. In turn, the GC, since
it touched the whole heap, generated page faults in order
to migrate the data from the GPU to the CPU. In contrast,
for small data sizes in UM, there is no performance penalty
when performing a full GC, as we see from the benchmarks
DFT and NBody.

Figure 10 shows the performance overheads for the GC
call when using the UM from Level Zero on integrated Intel

J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan, and C. Kotselidis

GPUs. In contrast to discrete GPUs, there is no page migra-
tion on integrated GPUs, and therefore, we observe reduced
performance penalties when a full GC is executed. At most
we observe a 4% performance difference compared to the
default non-shared memory allocator for MaxineVM which
is within the error margin. This number refers to the devi-
ation range as obtained by the number of runs that we ran
for each benchmark.

What we conclude is that running UM on integrated GPUs
introduces little overheads over the default GC, while using
CUDA UM on discrete GPUs the performance penalty on
GPUs is high. This means that, if users want to run with
large data sizes while keeping low GC overheads, other al-
ternatives are needed, e.g., use off-heap data.

Number of GCs. Concerning the number of GCs per con-
figuration, the AOGC always trigger 25 GCs (10 for a warm
up phase and 15 for the measurement iterations) for both
input sizes. The AA and AONOGC modes triggered zero GCs
for small input sizes, and 12 GCs and zero GCs respectively
for the largest data size. The low number of GCs for these
two configurations is due to the use of large heaps as UM.

4.5 Discussion: Integration with Concurrent GCs

The results presented in this section aim to demonstrate the
best and worst case scenarios (along with a middle ground) of
using UM in managed programming languages regardless of
the GC type used. Although we conducted this work mainly
on a STW SemiSpace GC, below we outline how UM could
be integrated with more widely used GC such as the G1 [40]
or Shenandoah [16].

Since most modern GCs do not provide a linear mem-
ory region for hosting all generations but rather they split
the heap into multiple regions, we propose to designate a
number of these regions to be allocated in UM. The size or
the amount of these regions could be user configurable. In
typical GC cycles, these regions are not evacuated by the
GC. Instead, only when specific conditions are met (defined
by the user or by the VM), those regions are being handled
by the GC invoking the sync points explicitly during this
phase. A challenge with this proposed solution is the op-
timization of the fast-path for allocating objects. Since all
GCs use Thread-Local-Allocation-Buffers (TLABs) for fast
allocation, adding control flow in order to decide where to
allocate an object (normal space or UM region) would im-
pose significant slowdowns. A potential solution would be
to annotate the objects or arrays that we want to run on the
GPU (and hence allocate in the UM region), and augment
the compiler to force slow-path allocation for those objects
where this control flow can be added. Depending on the use
case, this slowdown may vary.

5 Related Work

To the best of our knowledge, this work is the first to im-
plement and evaluate a managed heap in Unified Memory.

Unified Shared Memory: Friend or Foe?

Thus, we focus on related work that specializes the Java
heap and provide automatic memory management across
heterogeneous devices.

Specialized Java Heap. Although we provide the first im-
plementation that allocates the Java heap in a Unified Mem-
ory Space, there are other works that have demonstrated the
potential of specializing the Java heap for different purposes.
Espresso [53] extends the JVM with the capability to use
Non-Volatile Memory through a Persistent Java Heap. It also
exposes a user-level API for manipulating objects in persis-
tent memory through Java Persistent Objects. Similarly, we
also expose an interface to the user for querying the driver,
device, and context objects from the VM.

Performance-Impact Memory Allocation (PIMA) [1] is
a system that partitions the Java heap into regions to use
the Intel Optane non-volatile memory. PIMA introduces an
interesting concept, in which heaps with different purposes
can live in the the same system. The objects that need to be
persistent can be promoted to the non-volatile space. Our
technique for Unified Memory could be also used by runtime
systems in which executions on hardware accelerators can
benefit from data migration to a shared memory space.

Gomez et al. [22] proposed a Java heap partition system
organized in several memory banks to improve energy ef-
ficiency during GC. Although we did not create more than
two partitions (in a SemiSpace GC), our approach can be also
used in similar partitioned heaps (e.g., in Level Zero it is
possible to create host and device shared memory types).

Liu et al. [36] proposed a shared Java heap partition sys-
tem divided into several segments for storing server and
application components for Java server applications. While
our focus is a single process that can run efficiently on hard-
ware accelerators, the Unified Memory region could be also
shared with other Java processes. This is possible because, in
our approach, the VM exposes to the applications the same
driver, device, and context low-level objects.

Handling Automatic Memory Management. Bertels et
al. [4] proposed an extension of the JVM to automatically
manage the GPU and CPU memory. In Bertels’ approach,
the GPU memory is used as an extension of the Java heap
memory space, and his work is focus on maximixing object
placement between the CPU and the GPU. Our approach
differs in that the heap is directly used as a UM space, rather
than having two separate heaps.

Another common solution to perform data management
for heterogeneous execution from Java is to lock the GC
while the application runs on native code on the target ac-
celerator (this is how Aparapi and TornadoVM currently
work). However, in most cases, this is not desirable since it
stops the Java application for a non-deterministic amount
of time while the native code runs on the accelerated code.
Our approach can complement existing frameworks such
as Aparapi [17], Marawacc [18], IBM GPU J9 [28] and Tor-
nadoVM [19], which, by default, do not use custom types

MPLR °23, October 22, 2023, Cascais, Portugal

off-heap. Additionally, our work can be extended to other
runtime systems such as Dandelion [48], Python [46], R [20],
and Julia [5],

6 Conclusions

Unified Memory (UM) between CPUs and GPUs is a resource
rarely exploited by managed runtime environments. In this
paper, we explore the implications of storing the Java heap
inside UM. By doing this, Java applications accessing GPUs
(or any other accelerator) automatically send data back and
forth between the CPU and the GPU. Besides, the JVM is
aware of the GPU data and, in the case of a GC, data can
be migrated to the CPU without causing memory faults by
inserting a GPU command queue synchronization point be-
fore the GC. To the best of our knowledge, this is the first
work that combines UM in the context of a managed heap.

Our technique has been implemented in MaxineVM, a
research VM for Java written in Java. The heap allocation
mechanism of MaxineVM has been enhanced to utilize the
UM on CUDA-compatible discrete and Intel integrated GPUs.
This enabled GPUs to directly access Java objects allocated
in the JVM heap. We evaluated our approach on a discrete
and an integrated GPU, and we showcased that while user
applications can still benefit from the GPU’s performance,
the managed runtime system can also perform full GCs. We
also show that the GC using UM introduces 4% overheads
when running on Intel integrated graphics, and up to 2.13x
against Java default non-shared memory allocator. Further-
more, the results show the potential of using UM by default,
in which it can still run CPU workloads with an overhead
of up to 12% (worst case) and 2% (average) for DaCapo and
Renaissance benchmarks. We conclude that, due to the low
overheads on integrated GPUs, UM is a suitable resource
to be exploited as a Java heap, which benefits execution on
heterogeneous devices and works seamlessly with the GC.
Furthermore, we showed that, if hardware acceleration is
used, UM can achieve up to 9.3x speedup compared to the
non-UM baseline implementation. For future work, we pro-
pose the integration of UM with Project Panama [39] in order
to allow users to define whether or not they intend to utilize
this feature during hardware acceleration.

Acknowledgments

This work is partially funded by Intel Corporate Research
Council and by the European Union’s Horizon 2020 pro-
gramme under grant agreement No 957286 (ELEGANT). Ad-
ditionally, it is funded by UK Research and Innovation (UKRI)
under the UK government’s Horizon Europe funding guaran-
tee for grant numbers 10048318 (AERO), 10048316 (INCODE),
10039809 (ENCRYPT) and 10039107 (TANGO). The authors
would also like to thank the anonymous reviewers as well
as Peng Tu (from Intel) and Alberto Magni for fruitful dis-
cussions that helped to improve the paper.

MPLR ’23, October 22, 2023, Cascais, Portugal J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan, and C. Kotselidis

References International Conference on Principles and Practices of Programming

[1] Shoaib Akram. 2021. Performance Evaluation of Intel Optane Memory on the Java Platform: Virtual Machines, Languages, and Tools (Lugano,

—

—

for Managed Workloads. ACM Trans. Archit. Code Optim. 18, 3, Article
29 (apr 2021), 26 pages. https://doi.org/10.1145/3451342

AMD. Last Access: February 2023. AMD Tools and SDKs. https:
//developer.amd.com/tools-and-sdks/

AMD. Last access: June 2023. HIP Programming Manual. https:
//rocm.docs.amd.com/projects/HIP/en/latest/index.html

Peter Bertels, Wim Heirman, Erik D’Hollander, and Dirk Stroobandt.
2009. Efficient Memory Management for Hardware Accelerated Java
Virtual Machines. ACM Trans. Des. Autom. Electron. Syst. 14, 4, Article
48 (aug 2009), 18 pages. https://doi.org/10.1145/1562514.1562516
Tim Besard, Christophe Foket, and Bjorn De Sutter. 2019. Effective
Extensible Programming: Unleashing Julia on GPUs. IEEE Transactions
on Parallel and Distributed Systems 30, 4 (2019), 827-841. https://doi.
org/10.1109/TPDS.2018.2872064

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. 2006. The DaCapo Benchmarks: Java Benchmarking De-
velopment and Analysis. SIGPLAN Not. 41, 10 (oct 2006), 169-190.
https://doi.org/10.1145/1167515.1167488

Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2011. Copper-
head: compiling an embedded data parallel language. In Proceedings
of the 16th ACM symposium on Principles and practice of parallel pro-
gramming. 47-56.

Cen Chen, Kenli Li, Aijia Ouyang, Zeng Zeng, and Keqin Li. 2018.
GFlink: An In-Memory Computing Architecture on Heterogeneous
CPU-GPU Clusters for Big Data. IEEE Transactions on Parallel and
Distributed Systems 29, 6 (2018), 1275-1288. https://doi.org/10.1109/
TPDS.2018.2794343

C.J. Cheney. 1970. A Nonrecursive List Compacting Algorithm. Com-
mun. ACM 13, 11 (nov 1970), 677-678. https://doi.org/10.1145/362790.
362798

Steven Chien, Ivy Peng, and Stefano Markidis. 2019. Performance
Evaluation of Advanced Features in CUDA Unified Memory. In 2019
IEEE/ACM Workshop on Memory Centric High Performance Computing
(MCHPC). 50-57. https://doi.org/10.1109/MCHPC49590.2019.00014

[11] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak,

Maria Xekalaki, Christos Kotselidis, and Mikel Lujan. 2018. Exploiting
High-performance Heterogeneous Hardware for Java Programs Using
Graal. In Proceedings of the 15th International Conference on Managed
Languages & Runtimes (Linz, Austria) (ManLang ’18). ACM, New York,
NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3237009.3237016

[12] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak,

Maria Xekalaki, Christos Kotselidis, and Mikel Lujan. 2018. Exploiting
High-performance Heterogeneous Hardware for Java Programs Using
Graal. In Proceedings of the 15th International Conference on Managed
Languages & Runtimes (Linz, Austria) (ManLang ’18). ACM, New York,
NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3237009.3237016
NVIDIA Corporation. Accessed in 2021. CUDA Toolkit Documentation.
https://docs.nvidia.com/cuda/

[14] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified

Data Processing on Large Clusters. Commun. ACM 51, 1 (jan 2008),
107-113. https://doi.org/10.1145/1327452.1327492

Naila Farooqui, Christopher J Rossbach, Yuan Yu, and Karsten Schwan.
2014. Leo: A profile-driven dynamic optimization framework for
{GPU} applications. In 2014 Conference on Timely Results in Operating
Systems ({ TRIOS} 14).

Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley, and
Roland Westrelin. 2016. Shenandoah: An Open-Source Concurrent
Compacting Garbage Collector for Open]JDK. In Proceedings of the 13th

Switzerland) (PPP7 ’16). Association for Computing Machinery, New
York, NY, USA, Article 13, 9 pages. https://doi.org/10.1145/2972206.
2972210

[17] Gary Frost. 2011. Aparapi in amd developer website.

[18] Juan Fumero. 2017. Accelerating Interpreted Programming Languages on
GPUs with Just-In-Time and Runtime Optimisations. Ph. D. Dissertation.
The University of Edinburgh, UK.

[19] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki,
James Clarkson, and Christos Kotselidis. 2019. Dynamic Application
Reconfiguration on Heterogeneous Hardware.. In Proceedings of the
15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE °19). Association for Computing Machinery.
https://doi.org/10.1145/3313808.3313819

[20] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach.
2017. Just-In-Time GPU Compilation for Interpreted Languages with
Partial Evaluation. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (Xi’an,
China) (VEE ’17). ACM, New York, NY, USA, 60-73. https://doi.org/
10.1145/3050748.3050761

[21] Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe
Dubach. 2015. Runtime Code Generation and Data Management for
Heterogeneous Computing in Java. In Proceedings of the Principles and
Practices of Programming on The Java Platform (Melbourne, FL, USA)
(PPPJ ’15). Association for Computing Machinery, New York, NY, USA,
16-26. https://doi.org/10.1145/2807426.2807428

[22] Ricardo Gomez, Flavius Gruian, and Liang Liu. 2016. Memory Power
Management for Java Processors Using Heap Partitioning and Power
Gating. In Proceedings of the 14th International Workshop on Java Tech-
nologies for Real-Time and Embedded Systems (Lugano, Switzerland)
(JTRES ’16). Association for Computing Machinery, New York, NY,
USA, Article 5, 8 pages. https://doi.org/10.1145/2990509.2990514

[23] Khronos® OpenCL Working Group. Last Access: Feb 2023. The
OpenCL™ Specification. https://registry.khronos.org/OpenCL/specs/
3.0-unified/pdf/OpenCL_APl.pdf

[24] The Khronos® SYCL Working Group. Last Access: Feb 2023. SYCL™
2020 Specification (revision 6). https://registry.khronos.org/SYCL/
specs/sycl-2020/pdf/sycl-2020.pdf

[25] IBM. Last Access: Feb 2023. Writing Java applications that use a
graphics processing unit. https://www.ibm.com/docs/en/sdk-java-
technology/8?topic=egpulwo-writing-java-applications-that-use-
graphics-processing-unit-linux-windows-only

[26] Intel. Last Access: Feb 2023. Intel, Level Zero. https://spec.oneapi.io/
versions/latest/elements/l0/source/index.html

[27] Intel. Last Access: Feb 2023. Intel oneAPL https://spec.oneapi.io/
versions/1.2-rev-1/introduction.html

[28] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar.
2015. Compiling and Optimizing Java 8 Programs for GPU Execution.
In 2015 International Conference on Parallel Architecture and Compila-
tion (PACT). 419-431. https://doi.org/10.1109/PACT.2015.46

[29] R. Jones, A. Hosking, and E. Moss. 2016. The Garbage Collection
Handbook: The Art of Automatic Memory Management. CRC Press.
https://books.google.it/books?id=TKOfDQAAQBA)

[30] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,
John Mawer, and Mikel Lujan. 2017. Heterogeneous Managed Runtime
Systems: A Computer Vision Case Study. SIGPLAN Not. 52, 7 (apr
2017), 74-82. https://doi.org/10.1145/3140607.3050764

[31] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,
John Mawer, and Mikel Lujan. 2017. Heterogeneous Managed Runtime
Systems: A Computer Vision Case Study. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (Xi’an, China) (VEE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 74-82. https://doi.org/10.1145/3050748.
3050764

https://doi.org/10.1145/3451342
https://developer.amd.com/tools-and-sdks/
https://developer.amd.com/tools-and-sdks/
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://doi.org/10.1145/1562514.1562516
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1109/TPDS.2018.2794343
https://doi.org/10.1109/TPDS.2018.2794343
https://doi.org/10.1145/362790.362798
https://doi.org/10.1145/362790.362798
https://doi.org/10.1109/MCHPC49590.2019.00014
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://docs.nvidia.com/cuda/
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/2807426.2807428
https://doi.org/10.1145/2990509.2990514
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=egpulwo-writing-java-applications-that-use-graphics-processing-unit-linux-windows-only
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=egpulwo-writing-java-applications-that-use-graphics-processing-unit-linux-windows-only
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=egpulwo-writing-java-applications-that-use-graphics-processing-unit-linux-windows-only
https://spec.oneapi.io/versions/latest/elements/l0/source/index.html
https://spec.oneapi.io/versions/latest/elements/l0/source/index.html
https://spec.oneapi.io/versions/1.2-rev-1/introduction.html
https://spec.oneapi.io/versions/1.2-rev-1/introduction.html
https://doi.org/10.1109/PACT.2015.46
https://books.google.it/books?id=TKOfDQAAQBAJ
https://doi.org/10.1145/3140607.3050764
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1145/3050748.3050764

Unified Shared Memory: Friend or Foe?

(32]

(33]

(35

—

(36

—

(37]

(38]

(39

-

(40]

[41]

[42

—

(43]

[44]

[45]

[46]

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A
llvm-based python jit compiler. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC. 1-6.

Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun, and Martin
Herbordt. 2014. An Investigation of Unified Memory Access Per-
formance in CUDA. In IEEE High Performance Extreme Computing
Conference (HPEC). https://doi.org/10.1109/HPEC.2014.7040988
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO’04). Palo Alto, California.

Peilong Li, Yan Luo, Ning Zhang, and Yu Cao. 2015. HeteroSpark: A het-
erogeneous CPU/GPU Spark platform for machine learning algorithms.
In 2015 IEEE International Conference on Networking, Architecture and
Storage (NAS). 347-348. https://doi.org/10.1109/NAS.2015.7255222
Tiancheng Liu, Ying Li, Andrew Schofield, Matt Hogstrom, Kewei Sun,
and Ying Chen. 2008. Partition-Based Heap Memory Management
in an Application Server. SIGOPS Oper. Syst. Rev. 42, 1 (jan 2008), 98.
https://doi.org/10.1145/1341312.1341331

NVIDIA. Last access: Feb 2023. NVIDIA Pascal Microarchitec-
ture. https://www.nvidia.com/en-us/data-center/pascal-gpu-
architecture/

NVIDIA. Last Access: February 2023. NVIDIA CUDA Toolkit. https:
//developer.nvidia.com/cuda-toolkit

Oracle OpenJDK. Last Access: Feb 2023. Project Panama: Intercon-
necting JVM and native code. https://openjdk.org/projects/panama/
Oracle. Last Access: June 2023. Garbage-First (G1) Garbage Collec-
tor. https://docs.oracle.com/en/java/javase/17/gctuning/garbage-
first-g1-garbage-collector1.html

Orion Papadakis. 2022. Performance analysis and optimizations of
managed applications on Non-Uniform Memory architectures. Ph.D.
Dissertation. University of Manchester.

Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos,
Foivos S. Zakkak, and Christos Kotselidis. 2020. Transparent Compiler
and Runtime Specializations for Accelerating Managed Languages on
FPGAs. Programming 2020 abs/2010.16304 (2020). arXiv:2010.16304
https://arxiv.org/abs/2010.16304

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems 32 (2019).

LLVM Project. Last Access: February 2023. Clang: a C language family
frontend for LLVM. https://clang.llvm.org/

Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Du-
boscq, Petr Tima, Martin Studener, Lubomir Bulej, Yudi Zheng, Alex
Villazén, Doug Simon, Thomas Wiirthinger, and Walter Binder. 2019.
Renaissance: Benchmarking Suite for Parallel Applications on the JVM.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
Association for Computing Machinery, New York, NY, USA, 31-47.
https://doi.org/10.1145/3314221.3314637

Mohaned Qunaibit, Stefan Brunthaler, Yeoul Na, Stijn Volckaert, and
Michael Franz. 2018. Accelerating Dynamically-Typed Languages
on Heterogeneous Platforms Using Guards Optimization. In 32nd
European Conference on Object-Oriented Programming (ECOOP 2018)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 109),

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

MPLR °23, October 22, 2023, Cascais, Portugal

Todd Millstein (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 16:1-16:29. https://doi.org/10.4230/LIPIcs.
ECOOP.2018.16

Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop,
and Mikel Lujan. 2017. Type Information Elimination from Objects on
Architectures with Tagged Pointers Support. IEEE Trans. Comput. 67,

1 (29 June 2017), 130-143. https://doi.org/10.1109/TC.2017.2709739
Chris Rossbach, Yuan Yu, Jon Currey, and Jean-Philippe

Martin. 2013. Dandelion: a Compiler and Runtime for Het-
erogeneous Systems. Technical Report MSR-TR-2013-44.
https://www.microsoft.com/en-us/research/publication/dandelion-

a-compiler-and-runtime-for-heterogeneous-systems/

Nikolay Sakharnykh. Last Access: Feb 2022. Maximizing Unified
Memory Performance in CUDA. https://developer.nvidia.com/blog/
maximizing-unified-memory-performance-cuda/

Jason Sanders and Edward Kandrot. 2010. CUDA by example: an
introduction to general-purpose GPU programming. Addison-Wesley
Professional.

Chuanming Shao, Jinyang Guo, Pengyu Wang, Jing Wang, Chao Li,
and Minyi Guo. 2022. Oversubscribing GPU Unified Virtual Memory:
Implications and Suggestions. In Proceedings of the 2022 ACM/SPEC on
International Conference on Performance Engineering (Beijing, China)
(ICPE °22). Association for Computing Machinery, New York, NY, USA,
67-75. https://doi.org/10.1145/3489525.3511691

Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Dayneés, and Douglas Simon. 2013. Maxine: An Ap-
proachable Virtual Machine for, and in, Java. ACM Trans. Archit. Code
Optim. 9, 4, Article 30 (jan 2013), 24 pages. https://doi.org/10.1145/
2400682.2400689

Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu
Zang, and Haibing Guan. 2018. Espresso: Brewing Java For More Non-
Volatility with Non-Volatile Memory. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS
’18). Association for Computing Machinery, New York, NY, USA, 70-83.
https://doi.org/10.1145/3173162.3173201

Maria Xekalaki, Juan Fumero Alfonso, Athanasios Stratikopoulos, Ka-
terina Doka, Christos Katsakioris, Constantinos Bitsakos, Nectarios
Koziris, and Christos-Efthymios Kotselidis. 2022. Enabling Trans-
parent Acceleration of Big Data Frameworks Using Heterogeneous
Hardware.

Yuan Yuan, Meisam Fathi Salmi, Yin Huai, Kaibo Wang, Rubao Lee, and
Xiaodong Zhang. 2016. Spark-GPU: An accelerated in-memory data
processing engine on clusters. In 2016 IEEE International Conference on
Big Data (Big Data). 273-283. https://doi.org/10.1109/BigData.2016.
7840613

Wojciech Zaremba, Yuan Lin, and Vinod Grover. 2012. JaBEE: Frame-
work for Object-Oriented Java Bytecode Compilation and Execution
on Graphics Processor Units. In Proceedings of the 5th Annual Workshop
on General Purpose Processing with Graphics Processing Units (London,
United Kingdom) (GPGPU-5). Association for Computing Machinery,
New York, NY, USA, 74-83. https://doi.org/10.1145/2159430.2159439
Tianhao Zheng, David Nellans, Arslan Zulfigar, Mark Stephenson,
and Stephen W. Keckler. 2016. Towards High Performance Paged
Memory for GPUs. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 345-357. https://doi.org/
10.1109/HPCA.2016.7446077

Received 2023-06-29; accepted 2023-07-31

https://doi.org/10.1109/HPEC.2014.7040988
https://doi.org/10.1109/NAS.2015.7255222
https://doi.org/10.1145/1341312.1341331
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://openjdk.org/projects/panama/
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-g1-garbage-collector1.html
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-g1-garbage-collector1.html
https://arxiv.org/abs/2010.16304
https://arxiv.org/abs/2010.16304
https://clang.llvm.org/
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.4230/LIPIcs.ECOOP.2018.16
https://doi.org/10.4230/LIPIcs.ECOOP.2018.16
https://doi.org/10.1109/TC.2017.2709739
https://www.microsoft.com/en-us/research/publication/dandelion-a-compiler-and-runtime-for-heterogeneous-systems/
https://www.microsoft.com/en-us/research/publication/dandelion-a-compiler-and-runtime-for-heterogeneous-systems/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://doi.org/10.1145/3489525.3511691
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/3173162.3173201
https://doi.org/10.1109/BigData.2016.7840613
https://doi.org/10.1109/BigData.2016.7840613
https://doi.org/10.1145/2159430.2159439
https://doi.org/10.1109/HPCA.2016.7446077
https://doi.org/10.1109/HPCA.2016.7446077

	Abstract
	1 Introduction
	2 Background
	2.1 MaxineVM Overview
	2.2 CUDA and GPU Unified Memory
	2.3 Intel Level Zero and Unified Memory

	3 UM for Managed Runtime Systems
	3.1 System Overview
	3.2 Enabling Unified Memory within MaxineVM
	3.3 XPU Interface
	3.4 Case scenarios

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Performance on CPUs
	4.3 Performance on GPUs
	4.4 Analyzing GC overheads
	4.5 Discussion: Integration with Concurrent GCs

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

