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Abstract
Java benchmarking suites like Dacapo and Renaissance are
employed by the research community to evaluate the perfor-
mance of novel features in managed runtime systems. These
suites encompass various applications with diverse behav-
iors in order to stress test different subsystems of a managed
runtime. Therefore, understanding and characterizing the
behavior of these benchmarks is important when trying to
interpret experimental results.
This paper presents an in-depth study of the memory

behavior of 30 Dacapo and Renaissance applications. To re-
alize the study, a characterization methodology based on
a two-faceted profiling process of the Java applications is
employed. The two-faceted profiling offers comprehensive
insights into the memory behavior of Java applications, as
it is composed of high-level and low-level metrics obtained
through a Java object profiler (NUMAProfiler) and a microar-
chitectural event profiler (PerfUtil) of MaxineVM, respec-
tively. By using this profiling methodology we classify the
Dacapo and Renaissance applications regarding their inten-
sity in object allocations, object accesses, LLC, and main
memory pressure. In addition, several other aspects such as
the JVM impact on the memory behavior of the application
are discussed.

CCS Concepts: • Software and its engineering → Mem-
ory management; Runtime environments; Object ori-
ented languages.
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1 Introduction
The in-depth understanding of the memory behavior of stan-
dardized benchmarking suites, such as the traditional Da-
capo [3], as well as the later Renaissance [23], is essential for
the community of JVM researchers and practitioners. That
said, memory profiling for Java applications is a challenging
task due to the “noise” introduced by the JVM itself. The JVM
interference lowers the accuracy of coarse-grain, black-box
profiling1, while on the other hand, fine-grain wrapping of
the application code imposes technical challenges as it is
intrusive and requires source code recompilation.
Popular Java profilers offer a range of high-level metrics,

including object allocations, threads, GC, and more. How-
ever, such tools typically provide only the high-level profile
of a Java application, lacking correlation with the under-
lying hardware, and thus making the analysis susceptible
to blind spots and inconsistent conclusions. For instance,
the Dacapo sunflow is characterized by [15] as “memory-
intensive” with respect to the total object allocations and the
allocation rate. However, in this paper we discover that a
close inspection of the last level cache misses reveals that the

1We refer to black-box profiling the process of using external tools to profile
the VM as whole without distinguishing any execution phases or VM-
internal aspects such as mutator or GC threads.

https://orcid.org/0000-0002-6486-8103
https://orcid.org/0000-0002-1731-7341
https://orcid.org/0000-0003-1691-968X
https://orcid.org/0000-0002-6670-0638
https://orcid.org/0000-0002-0154-4523
https://orcid.org/0000-0001-5554-7538
https://orcid.org/0009-0008-3490-4848
https://orcid.org/0000-0002-8146-3503
https://doi.org/10.1145/3617651.3622978
https://doi.org/10.1145/3617651.3622978
https://doi.org/10.1145/3617651.3622978


MPLR ’23, October 22, 2023, Cascais, Portugal Papadakis, Andronikakis, Foutris, Papadimitriou, Stratikopoulos, Zakkak, Xekalakis, Kotselidis

application does not pose high pressure to the main mem-
ory due to its good data locality. Hence, although sunflow
indeed is memory intensive with respect to the number of
total allocations, as we also observe, there is no negative
impact to its performance. Such a case highlights the value
of co-examining low-level hardware-related metrics along-
side typical high-level metrics to avoid misconceptions when
profiling managed applications. Similarly, approaches that
solely focus on low-level metrics lack the reverse correlation
and consequently turn out to be insufficient for the same
reasons. For the aforementioned reasons, amultifaceted char-
acterization approach that combines metrics across different
layers of the stack is needed.

This paper, addresses this gap by proposing amethodology
to characterize the memory behavior of a Java application
by analyzing and correlating application and hardware pro-
filing metrics. The proposed methodology is multifaceted
as it employs two independent profilers of MaxineVM [13]:
NUMAProfiler [21], and PerfUtil [21, 22]. The former pro-
filer monitors the VM to collect high-level metrics, such as
object allocations, accesses, etc. This information enables
an initial characterization of the memory intensity of an
application. The latter profiler leverages the Hardware Per-
formance Counters of the system to collect low-level metrics
related to hardware. This information is helpful to confirm
or reconsider the outcome of the initial characterization. The
co-examination of high and low-level metrics reduces po-
tential profiling blind-spots and provides valuable insights
for both the extensively studied Dacapo benchmarks and
the newer Renaissance benchmark suite. Hence, this paper
makes the following contributions:

1. It proposes a methodology to effectively characterize
the memory behavior of a Java application based on
a multifaceted profile that is composed of high-level
and low-level metrics.

2. It presents a comprehensive study on the memory be-
havior of 30 Dacapo and Renaissance benchmarks. The
study not only showcases the effectiveness of the pro-
posed methodology through the discussion of selected
examples but also results in the classification of the
studied benchmarks into several categories, leveraging
the multifaceted profile.

The rest of the paper is organized, as follows. Section 2
presents the tools that are utilized to perform the multifac-
eted profiling. Section 3 describes the experimental method-
ology that is followed for profiling all benchmarks with the
selected profilers as well as the experimental testbed. Sec-
tion 4 presents a rigorous study on the memory behavior of
all benchmarks. In particular, Section 4.2 performs an initial
characterization of the applications using the application-
level metrics obtained by NUMAProfiler, whereas Section 4.3
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Figure 1.MaxineVM equipped with PerfUtil & NUMAPro-
filer.

expands the initial characterization while discussing the mi-
croarchitectural metrics obtained by PerfUtil. Finally, Sec-
tion 5 presents the related work, and Section 6 conveys the
conclusions.

2 Tooling support for multifaceted
profiling

This section presents the two profiling tools that operate
within MaxineVM, a metacircular research VM written in
Java. NUMAProfiler is employed to collect the high-level met-
rics related to the application layer, while PerfUtil is used to
obtain low-level microarchitectural metrics. Both profilers
have been independently validated against other function-
ality equivalent ones [20]. Even though MaxineVM and its
profiling tools do not suggest a production environment, this
paper stands as an effective proof-of-concept and aims to
point towards new profiling opportunities for managed run-
times. Figure 1 illustrates the software stack of MaxineVM
along with an overview of the data metrics that are being col-
lected by each profiler. More information about each profiler
is given in the following sections.

2.1 NUMAProfiler
NUMAProfiler is an accurate Java object profiler for Max-
ineVM that is also enriched with NUMA awareness [21]. It
probes the runtime layer of the VM in order to monitor object
allocations, object accesses, survivor objects after garbage
collection, threads as well as the NUMA placement of the
virtual pages in the heap. NUMAProfiler exposes an API to
the VM runtime. The API calls are injected into the proper
components of MaxineVM. To avoid heap pollution as well as
the interruption of the application’s threads, NUMAProfiler
maintains thread-local buffers off-heap to store the profiling
data. Additionally, the API calls are used to lazily trigger
the profiler mechanisms when it is necessary. Even though
the profiling process is simplified due to this lazy approach,
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substantial overhead is introduced by the profiler (∼ 10𝑥).
However, that overhead can be tolerated since NUMAPro-
filer is intended for offline profiling purposes. While the
NUMA-related features of the profiler pertain to NUMA
hardware and its implications, this paper focuses solely on
studying the memory behavior of Java applications within
a traditional CPU architecture with uniform memory ac-
cess. Hence, NUMA architecture which is orthogonal to the
current study, is not within the scope of this work.
A feature of NUMAProfiler is the classification of the

ownership for the object accesses. NUMAProfiler classifies an
object access as shared or thread-local. Such a classification is
an important application property [12] because it highlights
the inter-thread dependencies; nevertheless, it is not a trivial
task. An object access is considered as shared, if the thread
that performed the access and the thread that acts as the
object owner are different. MaxineVM is modified to store the
owner of each object into the misc word of the object header.
Hence, the owner thread is disclosed during the profiling
of an object access along with the thread that performs the
access. For this work, NUMAProfiler is tuned to consider
that the owner of an object is the thread that has allocated
this object (allocator thread).

2.2 PerfUtil
PerfUtil is an accurate and flexible profiler which equips
the VM itself with fine-grain utilization of the Hardware
Performance Counters [22]. It interfaces with the perf [9]
functionality of the Linux kernel, and it passes over the con-
trol to the Java code of the VM. PerfUtil offers a flexible and
customizable way of monitoring microarchitectural metrics
per thread, per core or both. Similarly to NUMAProfiler, the
functionality of PerfUtil is exposed to the VM runtime by
an API. In addition, PerfUtil supports time-multiplexing that
enables a large set of events to be simultaneously counted,
while it operates with low overhead [21].

3 Experimental Setup
3.1 Testbed Characteristics
Table 1 shows the hardware and software characteristics of
the testbed that we used. The testbed is a Dell PowerEdge
R620 server that contains a dual socket Intel Xeon processor
with two NUMA nodes that result in 32 number of cores.
To ensure that any NUMA-related effect that might influ-
ence performance is excluded when studying the memory
behavior of the selected benchmarks, we employ the Single
Node configuration (see Table 1). That configuration estab-
lishes a Uniform Memory Access (UMA) environment for
performing our experiments by utilizing only one NUMA
node. Moreover, the Intel hyper-threading technology is dis-
abled to prevent any additional variations with regard to the
performance or the memory behavior of the benchmarks.
To avoid dynamic voltage and frequency scaling (DVFS),

Table 1. Hardware and Software Configurations.

HW

Processor 2 x Intel Xeon E5-2690
Sockets 2

NUMA nodes 2
Num of Cores 16 (32 threads)

LLC Size 40MB
Memory Controllers 8

DRAM 384GB

SW

OS Ubuntu 16.04
Kernel Linux 4.15.0-112-generic
JVM MaxineVM 2.9
GC SemiSpace (non generational)

Single Node
# of CPUs 1

# of Utilized Cores 8
LLC Size (MB) 20

Mem. Controllers 4
DRAM Size (GB) 192

Java Heap Size (GB) 100
HyperThreading off
Page migration off

the CPU frequency is fixed to at 2.9 GHz via the ACPI CPU
frequency driver.

3.2 Benchmark Suites
The latest pre-built maintenance release of Dacapo bench-
marks (dacapo 9.12 MR1) [4] was used, while the pre-built
0.11.0 release2 was used for Renaissance. The number of it-
erations of the benchmarks was selected based on the well
known good practices [15, 23] to reach awarmed up state and
it was augmented by ten additional runs to include enough
run-steady iterations in our measurements. Moreover, Da-
capo allows the user to configure the input size and the
deployed threads with some exceptions (i.e., avrora) where
the number of threads is determined by the input size. The
benchmarks of Renaissance have a “test” (small) and a “jmh”
(default/large) input size and most of the benchmarks aim to
automatically deploy worker threads equal to the number
of available cores. In our experiments, we used the largest
input size and deployed eight threads (wherever possible)
which corresponds to the number of cores in a single node.
Table 2 lists the studied Dacapo and Renaissance applications,
along with their run configurations. Note that some appli-
cations (batik, eclipse, tomcat, tradebeans, tradesoap,
dec-tree, finagle-chirper, finagle-http, page-rank)
are omitted from the performance evaluation due to var-
ious failures of MaxineVM including memory corruption
(segfaults) or concurrency bugs that lead to livelocks.

3.3 Experimental Methodology
The experiments were conducted in a two-step process.
Each step corresponds to an individual build of MaxineVM
equipped exclusively with one of the two profilers to prevent
interference between the profilers that may skew the results.
The first step, deploys MaxineVM with NUMAProfiler to
2https://github.com/renaissance-benchmarks/renaissance/tree/v0.11.0
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Table 2. Dacapo & Renaissance Benchmarks Characteristics.

Benchmark Input Size Iterations Instructions L1D
Reads

L1D
Writes Total Mem. Arith. Branch

D
ac
ap

o

avrora large (max) 30 57,645,363,283 35% 18% 56% 29% 15%
fop default (max) 50 2,644,295,397 28% 25% 47% 38% 15%
h2 huge (max) 20 1,292,129,013,772 29% 16% 48% 37% 15%
jython large (max) 30 294,432,673,937 27% 32% 43% 40% 16%
luindex default (max) 50 5,085,147,760 29% 25% 43% 40% 18%
lusearch large (max) 30 72,686,381,316 28% 21% 43% 40% 17%
lusearch-fix large (max) 30 72,517,120,274 28% 21% 43% 40% 17%
pmd large (max) 30 36,072,750,432 28% 22% 46% 38% 16%
sunflow large (max) 30 162,257,371,836 31% 21% 43% 43% 15%
xalan large (max) 30 223,669,834,459 29% 21% 48% 36% 15%
GEOMEAN - D - - 67,741,600,233 29% 22% 46% 38% 16%

R
en

ai
ss
an

ce

akka-uct N/A 34 413,031,096,621 30% 16% 45% 36% 19%
reactors N/A 20 344,901,909,214 31% 21% 52% 33% 15%
als N/A 40 173,577,079,497 24% 9% 33% 50% 16%
chi-square N/A 70 44,712,182,871 25% 15% 40% 42% 18%
gauss-mix N/A 50 88,927,702,969 26% 16% 42% 40% 18%
log-regression N/A 30 66,506,869,326 35% 8% 44% 38% 18%
movie-lens N/A 30 255,423,610,313 25% 14% 39% 45% 16%
naive-bayes N/A 40 95,767,198,846 28% 9% 37% 45% 18%
db-shootout N/A 26 415,462,411,962 26% 17% 43% 41% 16%
fj-kmeans N/A 40 16,587,430,766 33% 14% 46% 38% 15%
future-genetic N/A 60 50,065,010,991 35% 23% 58% 30% 13%
mnemonics N/A 26 167,497,623,059 27% 19% 46% 38% 16%
par-mnemonics N/A 26 164,897,514,508 27% 19% 46% 38% 16%
scrabble N/A 60 44,953,086,743 28% 19% 48% 37% 15%
neo4j-analytics N/A 30 176,983,336,923 29% 16% 44% 39% 16%
rx-scrabble N/A 90 6,552,607,394 32% 25% 56% 31% 13%
dotty N/A 50 19,001,592,728 26% 16% 42% 41% 17%
scala-doku N/A 20 48,122,342,431 30% 12% 42% 41% 17%
scala-kmeans N/A 60 9,360,648,141 31% 18% 48% 38% 13%
philosophers N/A 40 90,682,695,138 31% 20% 51% 34% 15%
scala-stm-bench7 N/A 70 21,856,846,101 28% 19% 47% 38% 15%
GEOMEAN - R - - 72,999,411,837 29% 16% 45% 39% 16%
GEOMEAN - - 71,260,215,626 29% 17% 45% 38% 16%

collect various object-related metrics, while the second step
runs MaxineVM with PerfUtil to collect numerous microar-
chitectural metrics. Note that the non-determinism of Da-
capo and Renaissance was experimentally observed to have
minimal impact on our results. We verified this by comparing
and contrasting the two runs as follows. First, we compared
the instruction count between runs and the total cycles re-
quired to complete the runs. Then, we compared the cache
behavior of benchmarks across the two runs ensuring the
miss ratios are similar. Naturally, the two runs have slightly
different absolute numbers; however, the behavior of the
benchmarks was almost identical. To reach parity between
the two runs we ensured that all timed executions were in hot
state (i.e. almost no recompilation was taking place). In addi-
tion, we ran all experiments with the same configurations
and with large heap sizes to ensure minimal interference
from the GC. Furthermore, when comparing against Open-
JDK runs (Section 4.6 ), we configured OpenJDK to behave as

similar as possible to MaxineVM by de-activating optimiza-
tions that are not present in MaxineVM (e.g. escape analysis,
compressed pointers, etc.). Finally, the multiplexing feature
of PerfUtil enabled concurrent monitoring of thirty-two perf
events in a single run.

4 Study
4.1 Methodology
Performing such a multifaceted performance analysis - in-
volving two different profilers - produces a large number
of data points which may be difficult to navigate and draw
conclusions. Below we provide a methodology, based on our
experience, on how to interpret those numbers in order to
characterize various benchmarks.
In general, we can follow two approaches: bottom-up or

top-down. In the bottom-up approach we start by looking
into the micro-architectural characterization of a benchmark
trying to understand what factors affects its performance.
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Then, we move at a higher level by comparing and contrast-
ing the numbers achieved by the high-level profiler in order
to validate or complement our assumptions and understand-
ing based on the low-level metrics. By examining the results
from the low-level profiler in Table 4, the first metric we fo-
cus on is that of the CPI (Cycles Per Instruction). In general,
the larger the CPI the slower the benchmark is. If the CPI is
high, we typically check the three main factors that affect
performance on modern processors: branch misprediction
ratio, cache miss ratio, and TLB miss ratio.

Based on the observed numbers, we hypothesize about the
behavior of the benchmark and then we try to the validate
those hypotheses by comparing and contrasting the low-level
results with those from the high level profiler. For example,
if we notice that a benchmark has high cache miss ratios,
which correlates with high CPI, we examine its allocation
rate and size to determine whether this is the root cause of
the problem or whether the benchmark has just irregular
memory access patterns. The same logic can be applied for
other metrics.

In the top-down approach, we follow a reverse methodol-
ogy. We first look into the high-level performance metrics
of NUMAProfiler to get a high-level understanding of the
benchmark and then we start delving deeper into its per-
formance characteristics. By examining first the high-level
performance metrics we can identify potential performance
bottlenecks of a benchmark and then focus on the low-level
microarchitectural profiling results that regard these specific
potential bottlenecks (e.g., high allocation rates may result
to high cache or TLB miss ratios).

In the following subsections, after presenting the collective
results from both profilers for all benchmarks, we apply
the methodology across two particular benchmarks as a
guideline (Section 4.5).

4.2 Characterization With High-Level Metrics
The object allocations, accesses, and their rates over time,
are quite indicative regarding the memory intensity of an ap-
plication. However, they do not always lead to well-rounded
conclusions as highlighted in this section. Table 3 (inspired
by Lengauer et al. [15]) outlines several object-related met-
rics (as obtained via NUMAProfiler) for each application.
The notable observations and findings of those metrics are
discussed in the following subsections. The reported num-
bers derive from the average of ten run-steady iterations
(after warm-up), and the maximum value of each metric is
highlighted as bold. Moreover, note that the NUMAProfiler
numbers inevitably incorporate MaxineVM-internal objects
due to metacircularity. Thus, any observed difference against
a HotSpot-based profiler (i.e., AntTracks [14, 15]) is expected
and attributed to the effect of metacircularity [20].

4.2.1 Object Allocations Count & Rate. The total count
of object allocations and memory footprint indicate how

much memory is allocated per application. However, they
do not highlight the intensity of the memory allocation. The
object count and object size per second metrics should be
taken under consideration towards characterizing the mem-
ory intensity of a managed application. An application that
allocates new objects at a high rate is very likely to put
excessive pressure on the memory system.
Dacapo: H2 allocates overall the most objects and size

of memory, however it has a low allocation rate. This is
due to the large number of instructions (and consequently
execution time) that h2 has (see Table 2). Sunflow allocates
less and smaller objects but it is the most allocation intensive
application in terms of objects and memory size. Jython is
the most intensive single-threaded benchmark both in terms
of objects and memory size allocation. Lusearch-fix has
been introduced as an update to lusearch bearing a fix in
the Lucene platform that reduces object allocations; however,
no such difference is observed3.
Renaissance: Akka-uct, naive-bayes,

neo4j-analytics, h2, and gauss-mix allocate the most
objects in total (per iteration). Akka-uct allocates almost
double the objects of naive-bayes which is the second
highest allocating application. Mnemonics and scala-doku
are the single-threaded applications with the most total
object allocations. Naive-bayes, akka-uct, gauss-mix,
neo4j-analytics, db-shootout, and scrabble are the
most intensive in terms of both object and size allocation
rate.

4.2.2 Memory Footprint & Object Layout. The over-
all object allocations do not necessarily reflect the memory
allocation footprint size (per iteration, in MB).

Dacapo: Luindex allocates the largest objects on average,
and it contains the most and longest arrays. However, it is a
single-threaded application with the smallest memory foot-
print among the Dacapo applications. Lusearch and xalan
follow in terms of average object size showing also higher
array rate and average array length than the geometric mean
of Dacapos. Xalan is an application that has large objects,
on average. Even though it performs fewer allocations than
sunflow, it ends up with a higher memory footprint.
Renaissance: Fj-kmeans has by far the largest average

object size (1.13 kB) among Renaissance applications, while
log-regression, db-shootout, and movie-lens follow. It
is notable that although fj-kmeans and db-shootout allo-
cate fewer objects than naive-bayes or neo4j-analytics,
they end up with higher memory footprint which is appar-
ently related with object size. In addition, fj-kmeans is an
array-dominated application with 63.9% of its allocations
being arrays while db-shootout, and movie-lens follow.

The discussion above highlights that such metrics are cru-
cial especially when the observed memory footprint origin

3This issue has been communicated to the authors of Dacapo, and a fix will
be issued in the next release update.
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Table 3. Object Allocations, Layout and Accesses in Dacapo & Renaissance.

Allocations Object Layout Accesses Sh. Accesses

Application Objects
[M]

Size
[MB]

𝑀𝑂𝑏𝑗𝑒𝑐𝑡𝑠

𝑠𝑒𝑐

𝑀𝐵
𝑠𝑒𝑐

Avg
obj

size [b]

Array
Rate
[%]

Avg
Array
Length

Count
[M]

𝑀𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠
𝑠𝑒𝑐

R/W
Ratio

R
[%]

W
[%]

avrora 9.3 407 0.4 18 46 22 11 4,865 219 10:1 93 57
fop 2.8 159 4.7 268 60 32 20 65 109 9:1 0 0
h2 461.5 24,763 0.9 49 56 34 12 51,518 103 16:1 41 31
jython 211.0 16,987 4.6 370 84 28 57 7,518 164 10:1 0 0
luindex 0.2 26 0.2 27 145 39 202 134 139 13:1 0 0
lusearch 30.8 3,876 12.7 1,601 132 25 119 2,357 974 15:1 24 4
lusearch-fix 30.8 3,876 12.7 1,603 132 25 119 2,362 977 14:1 24 5
pmd 27.4 1,541 3.9 219 59 23 32 1,144 162 10:1 36 7
sunflow 175.8 7,344 43.2 1,807 44 3 3 7,504 1,847 30:1 84 0
xalan 113.7 13,025 11.3 1,296 120 36 57 7,433 740 12:1 19 23
GEOMEAN-D 27.5 2,085 3.7 282 80 23 35 2,378 322 13:1 12 4
akka-uct 1,052.2 56,561 69.0 3,711 56 2 9 23,126 1,517 5:1 69 3
reactors 387.1 15,942 6.6 270 43 18 13 10,496 178 6:1 77 56
als 62.4 2,671 7.7 328 45 5 146 1,649 203 22:1 9 16
chi-square 105.6 3,474 22.6 742 34 2 42 1,000 214 8:1 27 0
gauss-mix 457.5 13,180 61.3 1,766 30 1 43 2,301 308 6:1 36 0
log-regression 11.3 1,068 1.6 148 99 8 545 1,984 274 110:1 2 2
movie-lens 176.0 12,749 7.5 546 76 22 113 4,391 188 10:1 34 11
naive-bayes 561.6 12,917 220.9 5,080 24 0.05 96 1,215 478 112:1 3 2
db-shootout 429.7 36,004 29.5 2,475 88 51 59 4,343 299 3:1 28 6
fj-kmeans 17.1 18,844 1.3 1,449 1,159 64 225 15,668 1,204 120:1 59 1
future-genetic 40.3 2,285 6.2 353 59 4 69 2,053 317 18:1 37 5
mnemonics 260.8 12,709 7.5 366 51 18 17 4,996 144 7:1 0 0
par-mnemonics 261.0 12,724 9.2 448 51 18 17 5,001 176 7:1 47 0
scrabble 66.4 2,982 23.4 1,052 47 15 6 1,411 498 8:1 47 0
neo4j-analytics 524.1 17,751 29.8 1,008 36 4 12 10,151 576 3:1 51 1
rx-scrabble 10.9 452 7.2 299 44 5 9 201 133 6:1 48 0
dotty 48.6 1,726 7.1 252 37 6 66 584 85 13:1 0 0
scala-doku 174.4 4,177 17.2 411 25 1 10 1,393 137 71:1 0 0
scala-kmeans 6.0 195 3.5 114 34 0.11 675 373 219 27:1 0 0
philosophers 68.4 4,115 14.0 841 63 15 19 3,802 777 6:1 60 30
scala-stm-bench7 35.0 1,724 11.8 578 52 14 22 894 300 9:1 37 0
GEOMEAN-R 101.2 5,216 12.3 633 54 5 40 2,405 292 13:1 14 0.4
GEOMEAN 66.4 3,880 8.3 487 61 8 38 2,397 301 13:1 16 0.1

matters (i.e., GC optimizations, an optimization targeting
large objects, heap size tuning and more). Moreover, the
Object Layout metrics reveal additional properties of an ap-
plication which are very likely to affect its memory and/or
overall behavior. For example, large objects (as in lusearch
and xalan) are likely to span across two memory pages.
Such applications can stress TLBs and page-tables more than
others. This type of memory pressure can be a source of
inefficiency in the context of NUMA [1, 10]. For example,
lusearch and xalan have been proven unfriendly to the
Page Migration mechanism of Linux [22] which is tightly
related to the TLB and page-table. Lusearch slows down by
∼13% while xalan gets its remote node accesses increased
by ∼300% when Page Migration is enabled.

4.2.3 Object Accesses. The object accesses highlight the
application-memory relation degree as observed from the

application layer. The columns “Object Accesses” and “Sh. Ac-
cesses” of Table 3 present a collection of object access metrics
as well as the percentage of shared accesses. The latter refers
to the number of accesses performed by a different thread
rather than the “owner” of the object (recall Section 2.1) as a
percentage of total object accesses.
Dacapo: As can be observed in Table 3, h2 performs the

most object accesses in total while, sunflow, xalan, and
avrora have more than 2x more accesses than the geomean.
Sunflow performs the most object accesses per second fol-
lowed by lusearch and xalan. All applications are read-
dominated with sunflow having the most (30) reads per one
write. Avrora shows the highest shared object R/W access
rate. Sunflow follows, but it has only shared Read accesses.
A high percentage of shared Read accesses is an indication
for the existence of the producer-consumer memory access
pattern. Finally, avrora, h2, and xalan show the highest
percentage of shared writes.
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Figure 2.Memory Intensive Applications in terms of Object
Allocations and Accesses.

Renaissance: Akka-uct, fj-kmeans, reactors, and
neo4j-analytics perform by far the most object ac-
cesses. Akka-uct and fj-kmeans show the highest object
access rate along with philosophers, neo4j-analytics,
scrabble, and naive-bayes that follow. All applications
are dominated by read accesses, with fj-kmeans having
120 reads per one write. On the other hand, db-shootout
and neo4j-analytics have the most balanced R/W ratio.
Many Renaissance applications show a considerable degree
of shared accesses with reactors having the most shared
reads and writes. Even though actor frameworks aim to
guarantee workload concurrency, their asynchronous non-
blocking message passing infrastructure inevitably leads
to accessing objects “owned” (allocated) by other threads.
Therefore, the degree of shared access for reactors and
akka-uct is justified. Nevertheless, it should be noted that
both reactors and akka-uct are artificial stress-test bench-
marks. As such, their observed behavior might not fully
represent such frameworks in general. On the contrary, als,
log-regression, naive-bayes show negligible shared ob-
ject accesses, thus potentially denoting data parallelism.

The above analysis makes clear that shared accesses pro-
filing can outline insights regarding the internal data depen-
dencies of the application. Such a property, especially with
respect to writes, is of high importance since it is tightly
related to the scalability of an application (i.e., on a NUMA
system).

4.2.4 Object Metrics Summary. Herefore, we have sur-
veyed all managed applications with respect to several high-
level memory metrics related to object allocations and object
accesses. Figure 2 groups those applications by the allocation
and access rates, and filters out those below the geometric
mean using the heuristic of Equation (1):

( 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 > 𝐺𝑒𝑜𝑚𝑒𝑎𝑛 ) AND ( 𝐴𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 > 𝐺𝑒𝑜𝑚𝑒𝑎𝑛 ) (1)

The left and right circles contain applications that exceed
the geometric mean of the object allocation rate and the
object access rate, respectively. The intersection of the two
circles highlights the applications that are intensive both in

terms of object allocations and object accesses. The emerging
classification confirms already known trends for Dacapo [12,
15]. However, a small differentiation is observed in terms of
absolute numbers as a side effect of the metacircular runtime,
the slightly different run configurations, and/or the different
(updated) version of the benchmark suite. Unlike previous
studies [12, 15], we observe that although the above metrics
are necessary, they are not sufficient to properly characterize
the memory behavior of a managed application. Thus, the
next section enhances our study with microarchitectural
analysis of metrics provided by PerfUtil.

4.3 Characterization With Low-Level Metrics
This section analyzes and discusses the findings derived from
PerfUtil. The insights provided by such a low-level profile
complement the findings of Section 4.2 while deepening the
understanding of the Dacapo and Renaissance applications.
To perform the profiling with PerfUtil, we followed the same
experimental procedure with NUMAProfiler, as described
in Section 4.2.

4.3.1 OverviewofHardware Instructions. Table 2 shows
the distribution of Arithmetic (integer and floating point),
Branch, and Memory Instructions per benchmark. The col-
lected metrics are presented as a percentage over the total
number of retired instructions. Table 2 also reveals the ratio
between Memory, Arithmetic, and Branch Instructions as
well as whether an application is dominated by read or write
accesses. PerfUtil counts the Total Retired Instructions, L1D
Reads, L1D Writes, Branch Instructions, and thus, the number
of Arithmetic Instructions is calculated as follows:

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 = 𝑇𝑜𝑡𝑎𝑙 − 𝐿1𝐷𝑅𝑒𝑎𝑑𝑠 − 𝐿1𝐷𝑊𝑟𝑖𝑡𝑒𝑠 − 𝐵𝑟𝑎𝑛𝑐ℎ (2)

Read and write ratios settle towards read operations, since
the L1D read instruction percentage is higher than L1D
writes for all applications. However, Renaissance applica-
tions show a greater diversity than Dacapo. For instance,
als, chi-square, movie-lens, and naive-bayes (all belong
to the Apache Spark family) are below the percentage of
minimum memory instructions observed in Dacapo, while
future-genetic is beyond the maximum one. Nevertheless,
the geometric mean of the percentage of memory instruc-
tions (Table 2 - Total Mem.) is, as expected, ∼45% and all
applications are dominated by read accesses. The L1D R/W
ratio tends to be aligned to the R/W Ratio of Table 3 even
though minor misalignments are visible; probably due to
the “noise” introduced by the VM infrastructure. Note that
the observed total instructions of a managed application are
essentially a mix of instructions from the application and
the VM itself. Since there is no obvious way to safely esti-
mate and exclude the latter, a co-interpretation of the results
derived from the NUMAProfiler and PerfUtil is necessary.
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Table 4. Cache/Memory Locality and Pressure in Dacapo & Renaissance

CPI BPU
MPKI

Misses PKI Miss Rate [%] Accesses
PK Obj. Op.

DTLB L1 L2 LLC DTLB L1 L2 LLC LLC Mem.
avrora 1.2 4.4 1.6 24.3 12.7 0.1 0.3% 4.4% 52.4% 1.0% 153 2
fop 0.8 1.0 0.9 13.2 5.9 1.2 0.2% 2.8% 44.3% 19.8% 233 46
h2 1.2 2.7 1.8 12.4 7.2 2.6 0.4% 2.6% 57.9% 36.3% 178 65
jython 0.5 0.5 0.4 8.8 2.2 1.0 0.1% 2.0% 25.5% 44.2% 82 36
luindex 0.6 2.0 0.4 5.2 1.9 0.1 0.1% 1.2% 35.7% 6.8% 70 5
lusearch 0.7 1.6 1.2 16.3 6.2 0.9 0.3% 3.8% 38.0% 14.6% 189 28
lusearch-fix 0.7 1.6 1.2 16.1 6.2 0.9 0.3% 3.8% 38.2% 14.8% 188 28
pmd 0.8 1.8 2.0 17.2 7.4 0.8 0.4% 3.7% 42.9% 11.2% 229 26
sunflow 0.6 2.5 0.5 7.6 2.3 0.7 0.1% 1.8% 30.5% 31.3% 48 15
xalan 0.9 1.6 1.0 19.6 6.2 0.9 0.2% 4.0% 31.5% 14.9% 181 27
GEOMEAN - D 0.8 1.7 1.0 12.8 5.0 0.7 0.2% 2.8% 38.6% 13.8% 138 19
akka-uct 0.8 1.4 1.1 24.5 6.8 2.5 0.3% 5.5% 27.9% 36.6% 122 45
reactors 1.0 1.2 0.7 17.6 7.2 0.8 0.1% 3.4% 40.7% 11.8% 251 30
als 0.4 0.3 0.1 2.7 0.9 0.3 0.0% 0.8% 31.8% 29.6% 98 29
chi-square 0.6 0.7 0.1 9.5 2.3 1.2 0.0% 2.3% 24.6% 51.5% 95 49
gauss-mix 0.5 0.4 0.1 13.8 4.2 2.2 0.0% 3.2% 30.6% 52.5% 138 72
log-regression 0.6 2.4 0.1 4.9 1.0 0.6 0.0% 1.1% 21.0% 55.1% 35 19
movie-lens 0.6 1.2 0.4 8.9 3.2 0.9 0.1% 2.3% 36.1% 26.8% 204 55
naive-bayes 0.5 0.1 0.1 12.8 3.6 2.0 0.0% 3.4% 28.2% 56.3% 197 111
db-shootout 0.5 0.5 0.2 8.8 3.4 1.5 0.0% 2.1% 38.2% 45.5% 293 133
fj-kmeans 0.8 1.2 0.6 9.0 4.6 2.7 0.1% 1.9% 51.1% 58.9% 5 3
future-genetic 0.8 0.9 0.3 10.0 3.8 0.7 0.1% 1.8% 38.2% 18.3% 105 19
mnemonics 0.6 2.9 0.6 14.6 2.6 1.2 0.1% 3.1% 17.7% 46.6% 91 43
par-mnemonics 0.7 3.1 0.2 15.2 3.1 1.2 0.1% 3.3% 20.1% 40.7% 105 43
scrabble 1.5 4.1 1.0 25.3 4.8 1.0 0.2% 5.3% 18.9% 21.8% 162 35
neo4j-analytics 0.7 1.0 0.5 19.7 3.9 1.8 0.1% 4.4% 19.5% 47.0% 65 31
rx-scrabble 0.9 2.7 0.3 20.1 3.4 1.1 0.0% 3.5% 17.2% 33.1% 117 39
dotty 1.1 4.1 2.2 29.2 9.3 1.7 0.5% 6.8% 32.0% 17.6% 311 55
scala-doku 0.6 1.6 0.6 15.3 8.7 1.4 0.1% 3.6% 56.5% 16.1% 295 47
scala-kmeans 0.6 2.1 0.2 3.8 0.9 0.5 0.0% 0.8% 24.8% 47.9% 26 13
philosophers 0.9 1.7 0.6 15.4 3.6 0.4 0.1% 3.1% 23.5% 10.3% 92 10
scala-stm-bench7 1.1 1.6 1.1 21.0 7.0 2.1 0.2% 4.5% 33.3% 30.0% 169 51
GEOMEAN - R 0.7 1.2 0.3 12.3 3.5 1.1 0.1% 2.7% 28.4% 31.9% 106 34
GEOMEAN 0.7 1.4 0.5 12.5 3.9 1.0 0.1% 2.8% 31.4% 24.4% 116 28

4.3.2 Data Locality & Cache/Memory Pressure. Al-
though the cache hierarchy aims to fill the latency gap be-
tween the CPU and main memory, the latter often remains a
source of delays in the execution of a program. Due to com-
plex features of modern hardware (e.g., out-of-order execu-
tion, multiple cache levels, shared memory, etc.) such charac-
terization lacks a strict definition (or concrete methodology)
and can only rely on a multifaceted profile that comprises
numerous metrics. However, CPI co-examination along with
memory hierarchy and Branch Prediction Unit (BPU) pres-
sure and locality metrics can reveal useful insights regarding
memory behavior.Misses Per Kilo Instructions (MPKI)
can be used as a global metric of “pressure” because it factors
in the total retired instructions [17, 28]. On the other hand,

miss rate of each memory level can provide an indication
of “data locality”. In addition, LLC and memory accesses
per kilo object operations (allocations + accesses) aim to
bridge low with high level metrics and are quite indicative
regarding data locality. Moreover, note that large pressure
on BPU derives from non-predictive control flow, or data-
dependent branches, or both. A non-predictive control flow
leads to accessing memory locations in a non-deterministic
manner, thereby influencing the regularity of the memory
access pattern. Additionally, in the case of data-dependent
branches, the accessed memory location cannot be predicted
leading to irregular memory access patterns. Therefore, a
large value of BPU MPKI can indicate irregularities in the
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memory access patterns which in the case of a memory in-
tensive application will penalize performance. The following
subsections discuss the above metrics which are listed in Ta-
ble 4 per application. The five highest values of each metric
are highlighted as bold.

The larger the MPKI value is, the “heavier” the load for the
corresponding memory hierarchy level is. Consequently, this
set of “pressure” metrics can be used to assess the memory-
bound degree in correlation to other applications. LLC MPKI
reveals that an application’s object allocation and access in-
tensiveness are not necessarily reflected in main memory
pressure which is counter-intuitive. For instance, in Dacapo,
sunflow is the most intensive application in terms of object
allocations and object accesses (recall Section 4.2.1). How-
ever, Table 4 shows that the largest pressure onmainmemory
among the Dacapo benchmarks is caused by h2. On the con-
trary, sunflow seems to put the least pressure, among the
multithreaded applications, on the memory hierarchy as the
LLC/Memory pressure and CPI metrics. This is justified by
the good spatial and/or temporal locality of sunflow work-
ing data. Sunflow’s behavior can also be observed in LLC
and memory accesses per kilo object operation ratio which
are below the geomean and among the lowest. Consequently,
the accesses per kilo object operationmetrics are quite indica-
tive regarding the locality of working data by comparing ob-
ject operations against actual cache/memory pressure. Fop is
the most LLC and main memory intensive among the single-
threaded applications (fop, jython, luindex), which is also
confirmed by its CPI. It is notable that although avrora and
pmd are the most LLC intensive applications, they finally
put low pressure on memory denoting that their data set
successfully fits into the larger LLC (compared to L2). Af-
ter examining LLC and memory pressure metrics, avrora’s
CPI seems to be affected more by BPU, DTLB, and cache
rather than main memory (see Table 4). High DTLB pressure
of lusearch and xalan probably is related to their large
objects.
Renaissance: As can be observed in Table 4, reactors,

scrabble, dotty, and scala-stm-bench7 have high CPI
values. Such a fact could imply stalls due to memory and
consequently memory-boundness. However, this observa-
tion contradicts with Figure 2 where only scrabble and
scala-stm-bench7 seem to be “object allocation and ac-
cess intensive”. Therefore, the assessment of memory inten-
sity cannot rely only on object-level metrics. An application
might be memory-bound due to other reasons (i.e., lack of
memory locality), even though it does not significantly al-
locate or access objects. In particular, reactors shows 2.5x
more LLC accesses per kilo object operations than the ge-
omeanwhich implies lack of data locality, while dotty shows
very high BPUMPKI which indicates irregularity in memory
access patterns (recall the first paragraph of Section 4.3.2 that
explains how the BPU MPKI is related to irregular memory

access patterns). Similarly, par-mnemonics has been classi-
fied as memory-bound [23], however its CPI is way below 1;
hence, the memory is not the most decisive factor for perfor-
mance of this application. In case of als, the inspection of the
CPI value confirms that it is compute-bound. Movie-lens
which has been also classified as compute-bound [23], it
lacks locality as it shows 2x more LLC accesses per kilo ob-
ject operations than the geomean. Hence, the performance
of this application is rather influenced also by memory.
Moreover, akka-uct, gauss-mix, naive-bayes,

db-shootout, scrabble, neo4j-analytics, and
philosophers are in the intersection of Figure 2; hence it is
expected to be memory intensive applications. Nevertheless,
they diversify as they do not put pressure on both the
LLC and memory. Akka-uct, gauss-mix, naive-bayes,
db-shootout and neo4j-analytics put significant pres-
sure to memory, as expected. On the contrary, scrabble and
philosophers put significant pressure only up to the LLC.
It is very likely that scrabble and philosophers either
benefit from locality in LLC or/and have a smaller working
data set that fits into LLC. Although, we cannot safely
estimate the exact reason for each, note that low LLC and
memory accesses per kilo object operation of philosophers
indicate good data locality. On the other hand, scrabble
shows high BPU MKPI, a symptom of irregular memory
access patterns. Irregular memory access patterns in
scrabble are also reported by [21], based on the fact that
this application deploys a centralized HashSet data struc-
ture for its working data4. In addition, rx-scrabble (that
implements the same algorithm as scrabble but uses an
alternative framework), dotty, mnemonics, par-mnemonics,
scala-kmeans, philosophers, and log-regression are
candidates for irregular memory patterns due to their high
BPU MPKI.

A similar diversity is observed for the applications in the
right circle of Figure 2. Fj-kmeans and scala-stm-bench7
put significant pressure on both LLC and memory, while
future-genetic stresses only the LLC. Fj-kmeans is the
second most intensive application in terms of object ac-
cesses, it is a read-dominated application, and according
to those data it seems to benefit from data locality since
it has the lowest LLC accesses per kilo object operations.
Nevertheless, it is notable that [21] characterizes fj-kmeans
as data locality bound in the context of a NUMA system.
Considering this fact, we observe that indeed, this appli-
cation benefits from data locality in a unified LLC poten-
tially due to limited cached data size. However, this is not
true in a distributed LLC environment (like a NUMA sys-
tem) where cache coherency protocols significantly im-
pact the locality of data in the LLC. The “object alloca-
tions intensive” chi-square and scala-doku do not put

4Thememory access location is unpredictable in a HashSet as it is calculated
by a hash function.
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significant pressure neither to LLC nor to Memory, since
object allocation operations are 3-5 orders of magnitude
lower than object accesses. Log-regression, naive-bayes,
gauss-mix, and chi-square, which are Spark applications,
show greater than 50% LLC Miss Rate. Such poor data local-
ity inevitably brings to the spotlight the effect of the Spark
engine when co-located with worker threads over the same
limited CPU and cache resources. However, only gauss-mix
and naive-bayes end up with highmemory pressure among
the aforementioned applications. Akka-uct has lower CPI
than reactors although the former has almost three times
more accesses to main memory. This counter-intuitive obser-
vation is due to the domination of memory instructions in
reactors (see Table 2), and because it has 2x more LLC ac-
cesses per kilo object operations than akka-uct. Throughout
this comparison, the high complexity of memory behavior
analysis is highlighted, thereby denoting that the memory
overhead can be derived by any component of the stack.

4.4 The Benefits of Multifaceted Profiling
The above characterization of each application according
to its memory behavior is illustratively summarized in Fig-
ure 3. The left part of this figure depicts the “view” obtained
by each profiling tool individually, while the right part il-
lustrates the “view” that is achieved by co-utilizing those
tools. This figure demonstrates the benefits of multifaceted
profiling by putting aside and performing a perception-wise
comparison between the left with the right part. For exam-
ple, the “view” of NUMAProfiler indicates that sunflow and
philosophers are memory intensive applications, however
as it is turned out by the multifaceted profiling they are nei-
ther LLC nor main memory intensive. On the other hand,
dotty, fj-kmeans or scala-stm-bench7 put considerable
pressure on the LLC and the main memory, even though they
do not perform much object allocations. Therefore, it is clear
that the proposed methodology broadens the profiling view,
and avoids misconceptions as well as blind-spots; hence, it
provides new opportunities for more effective profiling of
managed applications.

4.5 How to Navigate through the Numbers
To exemplify the methodology explained in Section 4.1, we
use as an example of a bottom-up analysis the scrabble
benchmark from the Renaissance suite. By examining the
results from the low-level profiler in Table 4, the first met-
ric we focus on is that of the CPI. In general, the larger the
CPI the slower the benchmark is. In the case of scrabble,
we see that the CPI is high compared to the other bench-
marks (1.46) which means that this benchmark for some
reason(s) does not execute fast. The next step is to discover
why scrabble behaves this way. For this, we typically check
the three main factors that affect performance on modern
processors: branch misprediction ratio, cache miss ratio, and
TLB miss ratio. As shown in Table 4, scrabble has high BPU

(4.11), DTLB (1.05), L1 (25.29), and L2 (4.79) MPKI which jus-
tify the high CPI. At this stage, we conclude that scrabble
puts pressure both on the CPU’s front-end (branch predic-
tor) and on the back-end (memory subsystem) which means
that the benchmark has significant and unpredictable control
flow divergence which may influence also its behavior when
accessing memory. Although the MPKI is high for L1 and
L2, we observe that the LLC although it has a miss high rate,
it is not amongst the worst performers which means the
following: 1) either scrabble is not too memory intensive
and its dataset can fit into the caches, or 2) it is intensive
but the hardware prefetcher does a good job in fetching the
correct data upon LLC misses. In order to understand in
which category scrabble belongs, it is now time to investi-
gate the numbers we obtained from the high-level profiler
shown in Table 3. As shown in Table 3, scrabble has a fairly
average sized dataset (2.9 GB) compared to the rest of the
benchmarks and does not have any write shared accesses.
If we combine all the findings we had so far by investigat-
ing the results produced by the two profilers we understand
that scrabble: 1) has irregular branch behavior, 2) has ir-
regular memory behavior through the cache hierarchy, and
3) although it is memory intensive it does not put signifi-
cant pressure beyond the LLC. Therefore, by combining the
two profilers we derive that scrabble exhibits an irregular
memory pattern that does not extend beyond its LLC and
has negative effect in its performance. The irregular mem-
ory access behavior is probably triggered by unpredictable
code paths within the code that access different parts of the
caches.

As an example of applying the top-down approach, we use
the sunflow benchmark from the Dacapo suite, for which,
we have prior knowledge from existing works. The find-
ings in Table 3 verify prior work. Indeed, sunflow has a
high object and data allocation rate; 43K objects/sec and 1.8
GB/sec, respectively. By looking at these numbers we may
assume that sunflow puts significant pressure into memory
which may result in high cache miss ratios and hence low
performance. To validate this hypothesis, we contrast the
high-level numbers with the low-level ones from Table 4.
As we see, although sunflow has large object and data al-
location rates, its performance is amongst the best in the
Dacapo suite since its CPI is very low (0.59). This means that
although it is regarded as memory intensive, this does not
reflect negatively in its performance since both its L1 and
L2 miss ratios are very low. However, we observe that the
LLC miss ratio is higher than the rest of the benchmarks
which is natural since it has a large data set. Hence, the CPU
will fetch the data from memory into the LLC upon request.
However, because sunflow exhibits good memory locality,
as soon as the data enter the cache subsystem (via a miss
request or by the hardware prefetcher), it makes good (re-
)use of them. Therefore, from the micro-architectural point
of view, although sunflow fetches data from memory due to
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Figure 3. Left: Profiling view from each tool individually. Right: Profiling view by co-utilizing the tools.

Table 5. VM configurations.

VM MaxineVM v2.9 OpenJDK 8 OpenJDK 11
GC Semi Space Serial GC G1
GC Threads 1 1 8
Generational GC No Yes Yes
Total Heap Size 100GB, Fixed 100GB, Fixed 32GB, Fixed
New Space Size 50GB (From Space) 40GB (Eden Space) 5-60% of Total
Escape Analysis Not Supported Disabled Enabled
Compressed OOPS Not Supported Disabled Enabled

its large dataset, it does it in a way that it does not negatively
affect the performance due to extremely good data locality.

4.6 The Impact of MaxineVM on Characterization
This study aims to characterize the memory behavior of the
Dacapo and Renaissance benchmark suite using MaxineVM
and its profiling tools. Naturally, as Blackburn et al. pointed
in their 2006 study [3], “we can draw dramatically divergent
conclusions by simply selecting a particular iteration, vir-
tual machine, heap size, architecture, or benchmark” [3]. To
quantify the effect of MaxineVM on our study we profile all
applications with “perf-stat” on OpenJDK 8 and OpenJDK 11
( Table 5 shows the VM configurations in detail - for machine
setup see Table 1). Then, we apply the same characterization
heuristics on the obtained results and finally compare and
discuss the outcome. The objective of this analysis is to un-
derstand if the benchmarks exhibit the same behavior across
different MREs rather than comparing the exact metrics.
For this comparison, we exercised two OpenJDK config-

urations: 1) OpenJDK 8 with Serial collector is used as the

closest configuration to MaxineVM while, 2) OpenJDK 11
with G1 GC is used as the latest compatible version with
Renaissance v0.11. In order to bring the OpenJDK configura-
tions closer to the MaxineVM one, we disabled both escape
analysis and compressed pointers. In addition, we exercised
large heaps to minimize GC interference. Lacking an equiv-
alent to PerfUtil profiling tool in OpenJDK, we perform all
profiling measurements for all VMs (including MaxineVM)
with perf-stat. However, perf-stat does not allow fine-
grain profiling in order to exclude warmup iterations. To
minimize this effect we run each application with increased
number of iterations (as in Table 2).

Table 6 presents the comparison of the memory behavior
characterization between MaxineVM (baseline), OpenJDK 8
and OpenJDK 11. In addition, Table 7 in Appendix A provides
an extended collection of metrics for OpenJDK 11. The mem-
ory behavior characterization is conducted by examining the
L2 MPKI and LLC MPKI as measured with perf-stat in or-
der to classify each application as LLC intensive and/or Mem-
ory intensive, accordingly. Each application with a value
greater than the geomean of its run configuration is con-
sidered as LLC/Memory intensive. In essence, we classify
each benchmark by comparing itself with the geomean of
all benchmarks in its run. Then, we examine whether the
result of this comparison is observed across all configura-
tion runs. For example, if we assess the L2 MPKI metric for
avrora, we can see that in MaxineVM the value is 12.09
(with a 4.07 geomean), in OpenJDK 8 the value is 12.03 (with
a 8.15 geomean), and in OpenJDK 11 the value is 10.52 (with
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Table 6. Comparison of the memory behavior characterization with OpenJDK 8 and 11 against MaxineVM.

L2 MPKI LLC MPKI
Benchmark MaxineVM JDK 8 JDK 11 Match MaxineVM JDK 8 JDK 11 Match
avrora 12.09 12.03 10.48 8, 11 0.10 0.25 0.16 8, 11
fop 5.42 10.18 10.49 8, 11 1.19 2.01 1.85 11
h2 7.16 7.84 7.41 8, 11 2.49 2.66 2.36 8, 11
jython 2.28 7.08 3.91 8, 11 0.92 3.63 1.18 8, 11
luindex 1.98 3.83 4.55 8, 11 0.20 0.35 0.88 8, 11
lusearch 6.16 4.70 4.59 0.81 2.26 1.31 8, 11
lusearch-fix 6.03 4.96 4.55 0.82 2.30 1.32 8, 11
pmd 7.68 9.62 9.15 8, 11 0.78 2.18 1.39 8, 11
sunflow 2.38 2.40 0.98 8, 11 0.68 0.93 0.18 8, 11
xalan 6.26 10.39 9.41 8, 11 0.87 3.21 2.00 8, 11
akka-uct 6.93 7.01 7.23 11 2.28 2.64 2.61 8, 11
reactors 7.30 16.34 12.51 8, 11 0.78 3.03 1.31 11
als 1.06 1.62 1.28 8, 11 0.29 0.64 0.40 8, 11
chi-square 2.50 5.30 3.09 8, 11 1.23 2.54 1.21 8, 11
gauss-mix 4.24 10.79 2.96 8 2.14 6.18 0.96 8
log-regression 1.39 5.59 5.92 8, 11 0.71 3.05 2.73
movie-lens 3.38 5.95 4.51 8, 11 0.81 2.00 1.18 8, 11
naive-bayes 4.88 9.51 10.82 8, 11 2.67 5.90 6.33 8, 11
db-shootout 3.26 12.41 7.56 1.30 5.61 2.80 8, 11
fj-kmeans 4.44 16.40 16.80 8, 11 2.23 9.69 9.64 8, 11
future-genetic 3.94 14.13 16.05 8, 11 0.65 2.96 1.80
mnemonics 2.53 13.24 7.07 1.12 6.46 2.80 8, 11
par-mnemonics 3.06 12.93 7.65 8 1.14 6.20 2.73 8, 11
scrabble 5.49 13.30 8.57 11 1.04 5.37 2.22 8, 11
rx-scrabble 3.31 10.48 7.84 1.12 4.67 2.70 8, 11
scala-doku 8.44 5.95 9.43 11 1.30 0.79 0.65
scala-kmeans 1.10 3.04 4.64 8, 11 0.56 1.50 1.88 8
neo4j-analytics 4.02 10.20 3.55 8 1.77 5.29 1.44 8, 11
dotty 8.87 11.85 8.87 8, 11 1.70 3.23 1.45 8, 11
philosophers 3.59 13.92 8.04 0.33 2.77 0.66 11
scala-stm-bench7 7.12 17.14 15.16 8, 11 1.93 5.61 4.25 8, 11
GEOMEAN 4.07 8.15 6.40 0.94 2.61 1.50
Match % 71%, 71% 81%, 81%

a 7.37 geomean). For all configurations, the observed values
are significantly larger than the geomean values of their
configurations hence they exhibit the same behavior across
configuration runs. The “Match” column highlights whether
the characterization of a benchmark with OpenJDK 8 and/or
11matches the characterization of the same benchmark with
MaxineVM.

The characterization regarding LLC intensivenessmatches
in 71% (of all benchmarks) between MaxineVM and both
OpenJDK 8 and OpenJDK 11. Moreover, the characteriza-
tion regarding memory intensiveness matches in 81% (of all
benchmarks) between MaxineVM and both OpenJDK 8 and
OpenJDK 11. These percentage differences inevitably reflect
the impact of VM implementations, GC algorithms, etc. on
the characterization study. Nevertheless, the OpenJDK 8 and

OpenJDK 11 results do not highlight “dramatically divergent”
trends and consequently conclusions.
Are the results obtained from MaxineVM transferable to

other VMs? : Based on our experiments, the majority of the
benchmarks (71%-81%) exhibit the same behavior across dif-
ferent VMs and configurations; albeit with different absolute
numbers. For the remaining benchmarks that do not demon-
strate the same trends across VMs, we observe that even
between runs within the same VM, they behave differently.
For example, the results of scala-doku and philosophers
would lead to different characterization even between Open-
JDK 8 and OpenJDK 11. In fact, the results in MaxineVM fall
in-between OpenJDK 8 and OpenJDK 11. Therefore, it is rec-
ommended that for these specific benchmarks that exhibit
great sensitivity across different VMs and configurations,
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ad-hoc characterization is required in order to draw safe
conclusions for a specific study.

5 Related Work
Many research efforts [5, 6, 8, 12, 14–16, 24–26] have aimed
to analyze the performance-critical properties of managed
applications. Some of them have proposed new profiling
tools for the JVM, such as AntTracks [14], AkkaProf [25],
FJProf [26], and OXJPerf [16] as well as novel profil-
ing techniques, such as bytecode instrumentation [12],
runtime-driven JVM instrumentation [12], application code-
wrapping [6], and BottleGraphs [8]. More specifically, Kalib-
era et al. [12] exploited bytecode instrumentation and
runtime-driven JVM instrumentation to study a wide set of
concurrency metrics for Dacapo benchmark suite. DuBois et
al. [8] leveraged BottleGraphs and studied the exhibited par-
allelism of Dacapo benchmarks. Lengauer et al. [15] utilized
AntTracks to study the memory behavior of Dacapo, Dacapo
Scala and SPECjvm2008 benchmark suites. AkkaProf and
FJProf are two special-purpose profilers [25, 26] utilized for
providing effective profiling metrics for Akka and Fork/Join-
based Java applications. Rossa et al. [24] presented P3, a tool
for the JVM that exploits bytecode instrumentation and offers
a high-level profile related to concurrency, synchronization,
etc. Those studies mainly focus on high-level application
profiling and metrics, and as a result, they lack correlation
with the low-level hardware metrics proposed in our study.

In addition, the choices in the available tooling infras-
tructure regarding the utilization of Hardware Performance
Counters for Java applications are notably limited. The few
and rare implementations either lack the ability to perform
fine-grain profiling, such as the Oracle Solaris Studio [19],
Intel VTune [7, 11], JMH [27] or even are not actively main-
tained, such as the JRockit [18], and the JikesRVM [2] which
both lack support beyond Java 6. One exception is the OJX-
Perf by Li et al. [16] which is a low-overhead profiler based
on perf that binds microarchitectural events to Java objects
and targets memory bloats. Nevertheless, the correlation of
low with high level metrics that OJXPerf offers is limited
to object and method scopes, hence it lacks visibility to the
overall memory behavior of the application.
Unlike the aforementioned studies and tools which have

not presented a multifaceted approach, Deshmukh et al. [5]
deployed perf and Lttng [6] in order to obtain a collection of
metrics from the microarchitectural as well as from the run-
time layer. However, they focused on the Common Language
Runtime (CLR) and on .NET applications.

6 Conclusion
This paper studied the memory behavior of 30 Dacapo and
Renaissance applications. For this purpose, a characterization

methodology based on a multifaceted profile of a Java appli-
cation was proposed. The profile is composed of high and
low-level metrics collected by two profilers of MaxineVM.
The findings of this work were leveraged to classify the

memory behavior of the studied applications into several
categories. The analysis complements other related studies
by revealing additional insights for the already extensively
studied Dacapo applications. Moreover, the study contributes
to the memory behavior understanding of the recently in-
troduced Renaissance benchmarks.
This work demonstrates how a characterization method-

ology that moves away from a single-faceted profiling ap-
proach can effectively broaden the analysis perspective by
avoiding some misconceptions and blind spots. Both the pro-
posed characterization methodology and the tooling support
for the multifaceted profiling can be considered as trans-
ferable items that can be applied to other MREs, besides
MaxineVM.
Finally, the work presented in this paper aims to initi-

ate new research opportunities, such as profiling studies
and optimization approaches, for MREs and to provide the
research community with useful insights regarding the mem-
ory behavior and characteristics of the most common Java
benchmarks.
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Table 7. Extended collection of profiling metrics for Dacapo & Renaissance benchmarks with OpenJDK 11.

MPKI Miss Rate
Benchmark CPI Instructions L1d reads L1d Writes Total Mem Arith. Branch BPU MPKI dTLB L1 L2 LLC dTLB L1 L2 LLC
avrora 1.15 1,145,187,092,622 40.5% 14.6% 55.1% 27.3% 17.6% 5.4 2.7 24.4 10.5 0.2 0.5% 4.4% 42.9% 1.5%
fop 0.94 128,286,649,238 30.7% 11.2% 41.9% 38.7% 19.4% 5.2 1.3 23.8 10.5 1.9 0.3% 5.7% 44.1% 17.6%
h2 1.05 20,236,025,909,823 30.3% 10.7% 41.1% 34.8% 24.2% 3.5 1.5 11.1 7.4 2.4 0.4% 2.7% 67.0% 31.8%
jython 0.56 2,473,114,676,608 31.6% 12.8% 44.4% 35.9% 19.7% 2.0 0.4 12.2 3.9 1.2 0.1% 2.7% 32.2% 30.3%
luindex 0.68 143,227,125,335 29.2% 11.3% 40.4% 40.6% 19.0% 4.2 0.7 11.3 4.5 0.9 0.2% 2.8% 40.4% 19.3%
lusearch 0.79 717,947,226,687 31.3% 13.8% 45.1% 36.5% 18.4% 3.8 0.5 15.9 4.6 1.3 0.1% 3.5% 28.9% 28.4%
lusearch-fix 0.78 698,465,299,117 30.8% 12.6% 43.5% 37.7% 18.8% 3.8 0.4 16.7 4.5 1.3 0.1% 3.8% 27.3% 29.0%
pmd 0.91 432,621,355,210 32.8% 11.9% 44.8% 35.5% 19.7% 4.2 1.2 24.7 9.2 1.4 0.3% 5.5% 37.1% 15.2%
sunflow 0.53 3,687,146,261,831 38.0% 14.2% 52.2% 34.9% 13.0% 2.7 0.2 5.5 1.0 0.2 0.0% 1.1% 17.8% 18.0%
xalan 0.96 2,266,685,709,977 31.7% 13.2% 44.9% 35.2% 19.9% 4.1 0.8 23.5 9.4 2.0 0.2% 5.2% 40.0% 21.2%
akka-uct 0.75 10,264,433,536,567 35.4% 13.9% 49.3% 35.5% 15.2% 1.5 2.0 14.5 7.2 2.6 0.4% 2.9% 49.8% 36.2%
reactors 1.11 2,114,330,887,997 34.3% 11.7% 46.0% 35.2% 18.8% 1.6 1.1 21.5 12.5 1.3 0.2% 4.7% 58.0% 10.4%
als 0.40 4,134,332,529,381 23.4% 7.4% 30.9% 55.1% 14.1% 0.5 0.1 3.3 1.3 0.4 0.0% 1.1% 38.5% 30.8%
chi-square 0.52 1,737,602,525,667 26.2% 7.1% 33.3% 44.3% 22.4% 0.9 0.2 9.2 3.1 1.2 0.0% 2.8% 33.6% 39.0%
gauss-mix 0.49 906,503,864,237 28.3% 8.6% 36.9% 46.9% 16.2% 1.3 0.3 12.9 3.0 1.0 0.1% 3.5% 23.0% 32.4%
log-regression 0.89 597,757,071,971 34.5% 6.0% 40.4% 29.1% 30.5% 8.4 0.5 17.1 5.9 2.7 0.1% 4.2% 34.6% 46.2%
movie-lens 0.61 3,591,824,088,054 26.2% 9.0% 35.2% 47.7% 17.0% 2.2 0.5 10.3 4.5 1.2 0.1% 2.9% 43.9% 26.1%
naive-bayes 0.84 563,772,321,159 32.7% 11.3% 44.0% 37.9% 18.0% 1.7 1.0 19.9 10.8 6.3 0.2% 4.5% 54.5% 58.6%
db-shootout 0.60 2,525,962,230,859 23.4% 12.1% 35.5% 46.2% 18.3% 1.2 0.6 14.8 7.6 2.8 0.2% 4.2% 50.9% 37.0%
fj-kmeans 0.85 3,132,997,222,512 32.5% 5.3% 37.8% 46.2% 16.0% 0.9 0.6 23.5 16.8 9.6 0.1% 6.2% 71.4% 57.4%
future-genetic 1.08 620,715,324,282 39.2% 12.2% 51.4% 30.8% 17.8% 3.7 0.8 27.9 16.1 1.8 0.2% 5.4% 57.6% 11.2%
mnemonics 0.59 833,979,961,083 28.7% 13.0% 41.8% 39.8% 18.4% 1.5 0.6 16.8 7.1 2.8 0.1% 4.0% 42.0% 39.6%
par-mnemonics 0.63 828,256,443,028 28.6% 13.3% 41.9% 39.9% 18.2% 1.7 0.6 17.6 7.7 2.7 0.1% 4.2% 43.4% 35.7%
scrabble 0.79 668,856,625,270 31.6% 11.7% 43.3% 37.9% 18.7% 3.2 0.7 16.8 8.6 2.2 0.2% 3.9% 51.0% 25.9%
rx-scrabble 1.00 226,082,596,560 31.5% 12.1% 43.6% 36.8% 19.6% 3.5 0.9 21.1 7.8 2.7 0.2% 4.8% 37.1% 34.4%
scala-doku 0.58 1,125,345,267,058 38.8% 15.7% 54.5% 28.9% 16.6% 1.9 1.0 16.5 9.4 0.7 0.2% 3.0% 57.1% 6.9%
scala-kmeans 0.61 159,361,934,000 36.5% 4.8% 41.3% 43.8% 14.9% 2.4 0.4 9.8 4.6 1.9 0.1% 2.4% 47.4% 40.6%
neo4j-analytics 0.56 4,864,680,739,287 28.3% 8.1% 36.4% 40.1% 23.5% 1.2 0.3 9.2 3.5 1.4 0.1% 2.5% 38.5% 40.4%
dotty 0.94 1,190,402,351,743 30.0% 9.0% 38.9% 40.1% 20.9% 5.4 1.5 25.2 8.9 1.5 0.4% 6.5% 35.2% 16.4%
philosophers 0.91 1,713,641,244,493 32.1% 14.2% 46.3% 34.3% 19.3% 2.1 0.3 13.0 8.0 0.7 0.1% 2.8% 61.8% 8.2%
scala-stm-bench7 1.49 637,561,312,030 31.3% 12.6% 43.9% 37.6% 18.5% 3.7 2.2 29.8 15.2 4.3 0.5% 6.8% 50.9% 28.1%

A JDK11 Results
This appendix contains the Table 7 that presents an extended
collection of profiling metrics for Dacapo & Renaissance
benchmarks with OpenJDK 11.
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