
Offloading Key Switching on GPUs: A Path
towards Seamless Acceleration of FHE
Orion Papadakis, Michail Papadimitriou, Athanasios Stratikopoulos, Maria Xekalaki,

Juan Fumero and Christos Kotselidis
Department of Computer Science

The University of Manchester
Manchester, United Kingdom
{first}.{last}@manchester.ac.uk

Abstract—Fully Homomorphic Encryption (FHE) enables se-
cure computations on encrypted data, offering strong privacy
guarantees for cloud computing, privacy-preserving machine
learning, and confidential data processing. However, the com-
putational overhead associated with FHE operations, due to the
large size of ciphertext and the high arithmetic complexity, limits
its practical applicability.

In this work, we address this challenge by presenting an
approach that is implemented within the OpenFHE library in
order to offload the most dominant components of key switching
for the BGV scheme on GPU hardware. In particular, the scope
of this work is the performance improvement of the Approximate
Modulus Downscaling (ApproxModDown) function. Our experi-
mental evaluation shows that the proposed system can yield up
to a 4.58→ performance speedup against the vanilla OpenFHE
ApproxModDown implementation, while also resulting in 1.16→
performance improvement per homomorphic multiplication and
1.08→ improvement for end-to-end execution time.

Index Terms—data privacy, fully homomorphic encryption,
hardware acceleration, GPUs

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) enables computa-
tions on encrypted data without requiring decryption, offer-
ing strong privacy guarantees for secure cloud computing,
privacy-preserving machine learning, and confidential data
processing [1]–[3]. However, FHE operations incur significant
computational overhead due to the large size of ciphertext
and the high arithmetic complexity involved in homomorphic
computations. As a result, efficient implementations that utilize
hardware acceleration are critical for making FHE practical.

Among the various FHE schemes, Brakerski-Gentry-
Vaikuntanathan (BGV) is widely used for its efficiency in
supporting leveled homomorphic computations [4]. One of the
key challenges in FHE schemes like BGV is noise growth,
which accumulates as long as the number of homomorphic
operations grows, eventually posing the need for noise man-
agement techniques such as key switching. For example,
the Approximate Modulus Downscaling (ApproxModDown)
function plays a crucial role in this process, as it enables
ciphertext modulus reduction while maintaining correctness.

Existing FHE libraries, such as OpenFHE [5], Microsoft
SEAL [6], and Zama’s TFHE-rs [7], provide software imple-
mentations of homomorphic operations optimized for general-
purpose CPUs. While these libraries incorporate algorithmic

optimizations, they do not typically support GPU acceleration
for computationally intensive tasks. Prior works have explored
GPU implementations of FHE operations, but many of them
often target schemes other than BGV, or develop standalone
GPU-based FHE libraries.

In this work, we present a novel approach that provides
GPU acceleration for the key switching operation in BGV
homomorphic multiplication. The system is open-source and
integrates hardware acceleration seamlessly into the OpenFHE
library. Our experiments show that users can achieve up to
1.08→ end-to-end performance improvement, without requir-
ing to explicitly program the GPU. We have performed an in-
depth analysis that shows that our implementation can yield
up to 4.58→ performance speedup when offloading the key
switching operation on a GPU. Finally, our experimental eval-
uation shows that GPU acceleration can be useful when high-
depth computations are feasible (i.e., when the computational
depth of homomorphic multiplications is higher than five).

II. BACKGROUND

A. Fully Homomorphic Encryption
FHE is a cryptographic technique that allows computations

to be performed directly on encrypted data without requiring
decryption. This property makes FHE particularly useful for
privacy-preserving applications such as secure cloud comput-
ing and encrypted machine learning [3], [8]. Among various
FHE schemes, Brakerski-Gentry-Vaikuntanathan (BGV) [9] is
a Ring-Learning with Errors (RLWE)-based [10] leveled FHE
scheme.

Practical applications of FHE often require performing
multiple sequential operations on encrypted data. However,
each homomorphic operation, particularly multiplications, in-
troduces additional noise into the ciphertext. The ability to
perform consecutive operations while controlling noise and
ensuring successful decryption is referred to as the computa-
tional depth [9]. To support deep computations, BGV employs
noise management techniques that mitigate noise growth and
extend the computational depth.

B. Key Switching
Key switching is a noise management technique [11] that

enables ciphertexts to be transformed from one key to another

while maintaining correctness and reducing noise. Without
key switching, ciphertexts would accumulate excessive noise,
thereby limiting the number of consecutive homomorphic
operations that can be performed. Since successful decryption
requires noise to remain within a certain threshold, key switch-
ing is essential for enabling deeper computations without
compromising correctness.

C. Hardware Acceleration
Hardware accelerators such as, GPUs and FPGAs, enhance

software performance through heterogeneous programming
models like OpenCL [12], CUDA [13], and oneAPI [14].
These models expose APIs to simplify development and follow
a common three-step workflow [15]: 1) transferring data from
CPU memory to accelerator memory, 2) executing parallel
computation, either via source code (e.g., CUDA, OpenCL,
DPC++) or pre-compiled binaries (e.g., SPIR-V), and 3)
moving results back to CPU memory.

While heterogeneous programming models provide APIs
for hardware acceleration, achieving optimal performance is
complex. Developers must manage data transfer overhead and
consider hardware architecture, accelerator type, and inter-
connect bandwidth (e.g., PCIe). GPUs excel in fine-grained
parallelism, executing thousands of threads on multiple data
items [16], whereas FPGAs leverage on-chip resources for
customized coarse-grain execution [17].

III. RELATED WORK

A. FHE Libraries
Various FHE libraries implement different cryptographic

schemes. OpenFHE [5] (C++) supports BGV, BFV, CKKS,
DM (FHEW), and CGGI (TFHE), while Microsoft SEAL [6]
(C++) focuses on BFV and CKKS. Zama’s TFHE-rs [7] and
Concrete [18] (Rust) specialize in TFHE, and Lattigo [19]
(Go) targets cloud-based BFV and CKKS applications. Despite
their strengths, none offers a standardized mechanism for
seamless GPU integration, thereby requiring custom imple-
mentations for hardware acceleration.

B. Hardware Acceleration
Hardware acceleration plays a crucial role in improving

the efficiency of homomorphic encryption. Various approaches
have been explored, including CPU vectorization, GPU accel-
eration, and FPGA-based solutions.

CPU-Based Acceleration. OpenFHE includes a Hardware
Abstraction Layer (HAL) that enables optimized execution of
homomorphic operations. The HAL currently supports Intel’s
HEXL library, which utilizes Advanced Vector Extensions
(AVX) to accelerate modular arithmetic. Microsoft SEAL and
PALISADE also integrate HEXL to enhance their perfor-
mance.

GPU Acceleration has been extensively studied for homo-
morphic encryption. Badawi et al. [20] proposed a parallel
GPU implementation of the BFV scheme, achieving significant
speedups over Microsoft SEAL. Other works have analyzed
multi-threaded CPU and GPU implementations of BFV for

TABLE I
EXECUTION TIME % OF EVALMULT AS NUMBER OF MULTIPLICATIONS

INCREASES.

of Multiplications 1 5 12 24
EvalMult Exec. Time % 12 27 50 69

PALISADE [21] and proposed parallel GPU implementations
of leveled FHE [22]. Research has also optimized GPU imple-
mentations of the Number Theoretic Transform (NTT) to miti-
gate shared memory conflicts and thread divergence, notably in
cuHE [23] and Microsoft SEAL [24]. HEonGPU [25] and [26]
introduced an accelerated GPU implementation for Microsoft
SEAL, offloading all major operations of the BFV scheme
(addition, multiplication, relinearization, and rotation) to the
GPU. Compared to these works, our approach targets the BGV
scheme, supporting larger ring dimensions (up to n = 65536
versus their n = 32768 limit) and focusing specifically on
homomorphic multiplication.

More recently, Cheddar [27] and PhantomFHE [28] have
proposed fully GPU-based libraries for CKKS and BFV,
CKKS, and BGV respectively. PhantomFHE achieves a 1.3→
speedup for BGV homomorphic multiplication, while our
implementation achieves 1.16→ (see section VI-B). However,
PhantomFHE offloads the entire homomorphic multiplication
and relies on advanced algorithmic optimizations while our
design selectively accelerates only 47% (see section IV) of the
homomorphic multiplication, thus simplifying development by
reusing pre-existing and highly optimized components of a
FHE library.

FPGA Acceleration has been explored for homomorphic
encryption. Intel’s open-source HEXL FPGA library was
archived in December 2023. Agrawal et al. [29] proposed an
FPGA-based somewhat homomorphic encryption architecture,
while Riazi et al. [30] introduced HEAX, a high-performance
modular arithmetic engine. Sinha et al. [31] implemented BFV
on FPGAs, emphasizing fast external memory access for high
performance.

This work adopts GPU acceleration for its strong per-
formance, programmability, and accessibility. GPUs’ paral-
lelism suits the data-parallel nature of FHE components (e.g.,
NTT) and are easier to program than FPGAs through mature
CUDA toolchains. While we focus on the BGV scheme, the
underlying optimization strategies naturally extend to other
key-switching-based schemes such as BFV and CKKS. Our
contribution distinguishes itself by accelerating BGV homo-
morphic multiplications, supporting larger ring dimensions,
and integrating GPU acceleration directly into OpenFHE,
minimizing development overhead compared to standalone
GPU-based FHE implementations.

IV. ACCELERATION OPPORTUNITIES

To identify opportunities for performance improvement,
we profiled OpenFHE with various computational depths for
homomorphic multiplications using the CLion profiler based
on Perf and DTrace. This focus on multiplication is moti-
vated by prior work [32], which conducted a fine-grained

CryptoContextImpl::
EvalMult (68%)

KeySwitchCore
(35.5%)

EvalFastKeySwitchCore
 (21%)

EvalKeySwitchPrecomputeCore
(14.2%)

ApproxModDown
(14.2%)

EvalFastKeySwitchCoreExt
(6.2%)

SwitchFormat
(7.3%)

ApproxSwitchCRTBasis
(3.6%)

NativeVectorT::ModSubEq
(1.5%)

PolyImpl::Times
(2.9%)

PolyImpl::Times
(1.4%)

PolyImpl::Plus
(1%)

SwitchFormat
(8.2%)

ApproxSwitchCRTBasis
(4.4%)

1

2

3

Fig. 1. BGV Homomorphic Multiplication Function Call Chain in OpenFHE.

performance analysis of BGV operations in OpenFHE and
identified homomorphic multiplication as the most compu-
tationally expensive operation, significantly outweighing the
cost of additions and other operations. The profiled FHE
application encrypts two plaintexts, perform a specific number
of consecutive homomorphic multiplications, and then decrypt
the result. Table I shows the increasing impact of homomor-
phic multiplication (EvalMult) on the execution time as the
number of consecutive multiplications grows (1, 5, 12, and
24). For a single multiplication, EvalMult accounts for over
12% of the total execution time, rising to approximately 70%
with 24 multiplications, making it the dominant factor in end-
to-end performance.

Furthermore, Figure 1 presents the function call tree of
EvalMult along with the end-to-end execution time percentage
of each function, using the CLion profiler on the profiled
FHE application. Our analysis reveals that homomorphic mul-
tiplication primarily consists of two major components: i)
Key Switching (SchemeBase::KeySwitchCore), and ii)
Multiplication Core (LeveledSHERNS::EvalMult).

As shown in Figure 1, key switching dominates the ho-
momorphic multiplication and is a rather computationally
expensive operation as it accounts for 35.5% of total execution
time. Furthermore, key switching involves polynomial multi-
plications and modular reductions, both of which get bigger as
the ring dimension grows; hence they tend to become increas-
ingly costly. Existing CPU-based implementations struggle to
efficiently handle key switching for large ring dimensions due
to limited parallelism.

Given the structured nature of key switching computations,
there is an opportunity for GPUs to offer significant accel-
eration. Modern GPUs offer high-throughput arithmetic and
efficient memory access patterns that can be leveraged to
parallelize polynomial arithmetic and modular operations. By
exploiting GPU acceleration, the performance of key switching
can be significantly improved, making FHE more practical for
real-world applications.

V. DESIGN & IMPLEMENTATION

As noted in previous work [32], a common chal-
lenge in GPU acceleration is related with the data
types compatibility, which in our case creates compat-
ibility issues between OpenFHE’s custom classes and

DCRTPoly - OpenFHE Object
Fields:
std::vector<PolyImpl<NativeVector>> m_vectors

Format m_format

std::shared_ptr<Params> m_params

CUDA

ulong host_m_vectors[NxM]

Marshal

Unmarshal

Fig. 2. Marshaling/Unmarshaling.

CUDA’s primitive types. OpenFHE employs custom classes
such as DCRTPoly for double-CRT polynomials and
NativeInteger/NativeVector for polynomial coeffi-
cients, whereas CUDA primarily operates on primitive data
types (e.g., int, float). To address this, we implemented
a transparent transformation process that involves marshaling
and unmarshaling (Figure 2). This process efficiently trans-
forms OpenFHE objects into CUDA-compatible data struc-
tures before computation and converts them back afterward,
ensuring seamless integration.

To accelerate FHE computations by parallelizing and of-
floading parts of the multiplication operation on GPUs, we
followed two design principles:

1) Achieve a positive compute-to-transfer ratio, ensuring
that computation benefits outweigh data transfer costs.

2) Minimize data transfer overhead by (i) caching
reusable data on the GPU and (ii) overlapping data
transfers with computations.

These principles are crucial, as prior work [32] has demon-
strated that data transfers along with the data transformation
of OpenFHE objects can be primary bottlenecks in end-to-end
performance. Additionally, OpenFHE currently lacks a stan-
dardized interoperability interface for accelerator backends,
necessitating every contributors to integrate with a custom in-
terface for their GPU implementation. This absence introduces
additional development challenges, as the complexity of the
code base becomes higher and its maintainability gets lower.
As a result, the scope of OpenFHE components that can be
efficiently offloaded on an accelerator within a single research
effort is inherently constrained.

A. Analysis of the Parallelizable ApproxModDown Function

As shown in Figure 1, key switching accounts for
35.5% of the total execution time, with its two main
subcomponents being EvalFastKeySwitchCore (21.0%)
and EvalKeySwitchPrecomputeCore (14.2%).
Since EvalFastKeySwitchCore dominates the key
switch operation, we prioritize optimizing its execution.
Within EvalFastKeySwitchCore, ApproxModDown

contributes 14.2%, making it the most computationally
intensive function. This function implements an approximate
modulus reduction algorithm, which is crucial for managing
noise growth in homomorphic encryption. It consists of
three key subroutines: SwitchFormat (which performs
NTT transformations), ApproxSwitchCRTBasis, and
ModSubEq. Given that ApproxModDown accounts for
a substantial portion of execution time, includes highly
parallelizable algorithms such as NTT transformations
(in SwitchFormat), and features reusable components

like SwitchFormat and ApproxSwitchCRTBasis, it
presents an ideal target for GPU acceleration.

a) SwitchFormat (Step 1): The first step in
ApproxModDown applies an inverse Number Theoretic
Transform (iNTT) to the polynomial input. This
operation switches the polynomial’s representation from
the EVALUATION form back to the COEFFICIENT
form. The NTT is a discrete transform that operates
over a finite field, making it particularly suitable for
modular arithmetic in cryptographic applications [33]. It
enables efficient polynomial multiplication by converting
convolution operations into pointwise multiplications,
significantly reducing computational complexity from O(n2)
to O(n log n) [34].

b) ApproxSwitchCRTBasis (Step 2): In the next step, the
ApproxSwitchCRTBasis function converts the polyno-
mial from one modulus set to another. This transformation
is fundamental in key switching and it enables compatibility
between different modulus sets in Residue Number System
(RNS) arithmetic. Specifically, it maps a polynomial defined
over modulus set Q = {q1, . . . , qi} to a new modulus set
P = {p1, . . . , pk}. The transformation is efficiently computed
using precomputed modular inverses and reductions, and it
consists of modular multiplications, 128-bit multiplications,
additions and Barrett reductions.

c) SwitchFormat (Step 3): The following step trans-
forms the polynomial into the EVALUATION form for subse-
quent computations. This is achieved by invoking again the
SwitchFormat function, which at this stage performs a
forward NTT (fNTT) to return the polynomial to the EVAL-
UATION representation.

d) ModSubEq (Step D): The final step in
ApproxModDown applies an in-place modular subtraction to
refine the output. This operation ensures that the polynomial
coefficients remain within the appropriate range for continued
homomorphic computations.

B. Parallelization of ApproxModDown
To fully utilize GPU resources, we redesigned the imple-

mentation of the ApproxModDown function in CUDA using
the following techniques:

• Breakdown and Composition of Pipeline: We break
down ApproxModDown into its sub-components (iNTT,
ApproxSwitchCRTBasis, fNTT, and modular arithmetic),
implementing each as a separate CUDA kernel.

• Batch-Level Parallelism: Instead of processing polyno-
mials sequentially, we organize data into batches, thereby
ensuring high GPU occupancy.

The computational dataset is structured as a two-
dimensional array: One dimension corresponds to the modulus
set (P or Q). The other dimension represents the polynomial’s
ring size.

However, ApproxModDown cannot be implemented as a
single, continuous pipeline. This is due to ApproxSwitchCRT-
Basis, which transforms the polynomial from the smaller
modulus set P to the larger modulus set Q, altering the dataset

C
PU

EvalFastKeySwitchCore

NOWITH_CUDA

ApproxModDown

C++

EvalFastKeySwitchCoreExt

C++

ApproxModDown

C++
Return
Result

 Marshal
iTF

 Copy-In
iTF

 iNTT

Approx
Switch

CRT
Basis

P-Pipeline

Batch

Sy
nc Marshal

TF
 Copy-In

TF
 NTT

 ModSub
 &

 ModMul

 Copy-Out
 Result

 Un-
 Marshal
 Result

Q-Pipeline

Batch

ApproxModDownCUDA

 Marshal
iTF

 Copy-In
iTF

 iNTT

Approx
Switch

CRT
Basis

P-Pipeline

Batch

Sy
nc Marshal

TF
 Copy-In

TF
 NTT

 ModSub
 &

 ModMul

 Copy-Out
 Result

 Un-
 Marshal
 Result

Q-Pipeline

Batch

ApproxModDownCUDAG
PU

PCI-e Bus

YES

Fig. 3. ApproxModDownCUDA design & its interoperability with the
OpenFHE library.

structure. To accommodate this, we split the execution into two
distinct sub-pipelines:

1) P-Pipeline: Operates within modulus set P .
2) Q-Pipeline: Processes data in modulus set Q.
To enable efficient pipelined execution, we leverage asyn-

chronous CUDA operations (e.g., cudaMemcpyAsync) and
multiple CUDA streams. This approach provides several ad-
vantages:

• Hiding data marshaling and transfer costs by overlap-
ping memory copies with computation.

• Maximizing GPU utilization by ensuring either data
movement or computation is always active, reducing idle
time.

• Efficient batch scheduling, allowing independent
pipeline stages to progress while minimizing synchro-
nization overhead.

As illustrated in Figure 3, our GPU-accelerated implemen-
tation integrates seamlessly within the OpenFHE execution
flow. When GPU acceleration is enabled, ApproxModDown-
CUDA handles marshaling, data transfers, and the execution
of the CUDA kernel in a streamlined process. Execution
begins with marshaling necessary parameters (e.g., inverse
Twiddle Factors for iNTT) and transferring them to the
device. The P-Pipeline then computes the inverse Number
Theoretic Transform (iNTT) on the input polynomial, followed
by ApproxSwitchCRTBasis, which transforms the polynomial
into modulus set Q. Once this step completes, the execution
continues to the Q-Pipeline, where the forward NTT is per-
formed, followed by modular arithmetic operations to finalize
the result. Finally, the processed data is transferred back to the
host and is unmarshaled into its original format.

C. Parallelization of EvalFastKeySwitchCore
As shown in Figure 3, the proposed design implements

two instances of ApproxModDownCUDA which are executed
asynchronously. The rationale behind this decision is that
the ApproxModDown is invoked twice to process a single
polynomial which is split into two DCRTPoly instances.
Hence, we spawned two separate CPU threads, each invoking
one instance of ApproxModDownCUDA with distinct data.

TABLE II
EXPERIMENTAL TESTBED.

Hardware

Processor Intel Core i9-13900K
P-Cores 8 (32 HyperThreads) @ 3 GHz
E-Cores 16 @ 2.2 GHz
RAM 64GB
GPU NVIDIA GeForce RTX 4090 (Ada)

Cores: 16384
Memory: 24 GB

Software

Operating System PopOS 22.04 LTS (Kernel 6.2.0-39-generic)
CUDA Driver 565.57.01 (CUDA 12.6)
OpenFHE v1.0.3

TABLE III
CONFIGURATION PARAMETERS FOR OPENFHE AND THEIR

CORRESPONDING GPU BLOCK AND THREAD ALLOCATIONS FOR VARIOUS
COMPUTATIONAL DEPTHS.

Comput.
Depth Modulus Cyclotomic Ring

Dimension Blocks Threads

1 65,537 16,384 8,192 8 1,024
5 65,537 32,768 16,384 16 1,024

12 65,537 65,536 32,768 32 1,024
24 786,433 131,072 65,536 64 1,024

This design decision improves the resource utilization of the
GPU, and results in eliminating the idle time of the GPU while
also maximizing throughput.

VI. EVALUATION

A. Experimental Methodology
To evaluate the performance of the parallel implementation,

we conducted experiments on a testbed with both CPU and
GPU, as detailed in Table II. All reported measurements
are the average of one hundred executions. We used the
std::chrono C++ library to obtain precise timing data for: a)
end-to-end execution time (Enc. + Comp. + Dec.), b) homo-
morphic multiplications (Comp.) and, c) the ApproxModDown
function, both on the CPU and offloaded to the GPU.

1) OpenFHE Configuration: Table III presents the con-
figuration of the computational depth of the homomorphic
multiplications, the modulus, the cyclotomic, and the ring
dimensions for our experiments. Additionally, it reports the
allocation of the GPU blocks and threads that we evaluated
for each computational depth.

B. Performance Analysis
Figure 4 presents three performance metrics comparing the

proposed GPU-based system to the baseline vanilla OpenFHE
system running on CPU. The x-axis shows computational
depth, with the blue line representing relative end-to-end
performance. Additionally, we present two further lines that
correspond to individual sub-parts of the end-to-end execu-
tion. The orange line corresponds to the performance of the
homomorphic multiplication, and the green line shows the
performance of the ApproxModDown function itself.

At low depths (1 to 5), GPU performance lags behind the
baseline, with end-to-end execution 0.29x and 0.7x slower, and
homomorphic multiplication time 0.53x (depth 1) and 0.97x
(depth 5) lower. This reflects the overhead of offloading to the

Fig. 4. Speedup of the ApproxModDown, the Homomorphic Multiplications,
and the end-to-end accelerated implementation against the baseline.

GPU at lower workloads. However, as the number of consecu-
tive multiplication increases, GPU acceleration becomes more
effective. At a depth of 12, the GPU matches the CPU’s end-to-
end time (0.98→) and surpasses it in homomorphic operations
(1.13→ speedup). At a depth of 24, the GPU outperforms
the baseline by 1.08→ for end-to-end time and 1.16→ for a
single multiplication. A key factor in this improvement is the
ApproxModDown function, which sees dramatic speedup at
higher depths—3.46→ at 12 multiplications and 4.58→ at 24
multiplications. This indicates that the ApproxModDown func-
tion benefits considerably from GPU parallelization, thereby
becoming a major contributor to the overall performance gains
as the computational depth increases.

The 8% end-to-end execution time improvement at 24
multiplications is notable, considering only about 14% of
the overall execution path (see figure 1) was offloaded to
the GPU. This suggests that selectively accelerating key
components—without reimplementing the entire library—can
yield substantial gains, with room for further improvement
by offloading additional parts. Moreover, this is expected
to deliver even greater gains, as the copy-in and copy-out
overhead has already been incurred.

VII. CONCLUSION

This work presented a novel approach to address the compu-
tational challenges of FHE associated with the BGV scheme.
We provided an in-depth analysis of the computationally
expensive components within OpenFHE for performing homo-
morphic operations and identified key switching, in particular,
as a prime candidate for GPU acceleration. We detailed the
design decisions made during the development of our parallel
GPU implementation.

Our implementation achieved up to 4.58→ speedup over
vanilla OpenFHE ApproxModDown, with 1.16→ improvement
per homomorphic multiplication and an 1.08→ reduction in
end-to-end execution time for 24 consecutive multiplications,
demonstrating the potential of GPU acceleration for practical
FHE. In addition, this work novels in its specific focus on the
BGV scheme while it reuses and seamlessly integrates with an
open-source, and actively optimized FHE library, OpenFHE.

Future work includes offloading additional FHE components
to GPUs leveraging existing data transfers and exploring
FPGA-based acceleration strategies.

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon
Europe programme under grant agreement No 101070670
(ENCRYPT). In addition, this work is funded by UK Research
and Innovation (UKRI) under the UK government’s Horizon
Europe funding guarantee (10039809).

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford, CA, USA, 2009, aAI3382729.

[2] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “TenSEAL: A
Library for Encrypted Tensor Operations Using Homomorphic Encryp-
tion,” 2021.

[3] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
p. 34–91, Jan. 2020. [Online]. Available: https://doi.org/10.1007/s00145-
019-09319-x

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” in Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference,
ser. ITCS ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 309–325. [Online]. Available:
https://doi.org/10.1145/2090236.2090262

[5] A. A. Badawi, A. Alexandru, J. Bates, F. Bergamaschi, D. B.
Cousins, S. Erabelli, N. Genise, S. Halevi, H. Hunt, A. Kim,
Y. Lee, Z. Liu, D. Micciancio, C. Pascoe, Y. Polyakov, I. Quah,
S. R.V., K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett,
V. Vaikuntanathan, and V. Zucca, “OpenFHE: Open-Source Fully
Homomorphic Encryption Library,” Cryptology ePrint Archive, Paper
2022/915, 2022, https://eprint.iacr.org/2022/915. [Online]. Available:
https://eprint.iacr.org/2022/915

[6] “Microsoft SEAL (release 4.1),” https://github.com/Microsoft/SEAL,
Jan. 2023, microsoft Research, Redmond, WA.

[7] Zama, “TFHE-rs: A Pure Rust Implementation of the TFHE Scheme
for Boolean and Integer Arithmetics Over Encrypted Data,” 2022,
https://github.com/zama-ai/tfhe-rs.

[8] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory
of Computing, ser. STOC ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 169–178. [Online]. Available:
https://doi.org/10.1145/1536414.1536440

[9] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” in 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science, 2011, pp. 97–106.

[10] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” J. ACM, vol. 60, no. 6, Nov. 2013.
[Online]. Available: https://doi.org/10.1145/2535925

[11] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption
with polylog overhead,” in Advances in Cryptology – EUROCRYPT
2012, D. Pointcheval and T. Johansson, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 465–482.

[12] K. O. W. Group, “The OpenCL C Specification,” On-
line: https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/html/OpenCL C.html, Last Access: June 2024.

[13] NVIDIA, “NVIDIA CUDA Toolkit,” Last Access: June 2024. [Online].
Available: https://developer.nvidia.com/cuda-toolkit

[14] oneAPI, “The oneAPI Programming Model,” Last Access: June 2024.
[Online]. Available: https://www.oneapi.io/

[15] J. Fumero, A. Stratikopoulos, and C. Kotselidis, Heterogeneous
Programming Models. Cham: Springer International Publishing,
2024, pp. 37–56. [Online]. Available: https://doi.org/10.1007/978-3-
031-49559-5 3

[16] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“Gpu computing,” Proceedings of the Institute of Radio Engineers,
vol. 96, no. 5, pp. 879–899, May 2008.

[17] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software,” ACM Comput. Surv., 2002. [Online]. Available:
https://doi.org/10.1145/508352.508353

[18] Zama, “Concrete: TFHE Compiler that converts python programs into
FHE equivalent,” 2022, https://github.com/zama-ai/concrete.

[19] C. Mouchet, J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Lattigo: a Multiparty Homomorphic Encryption Library in Go,” in
Proceedings of the 8th Workshop on Encrypted Computing and Applied
Homomorphic Cryptography (WAHC). HomomorphicEncryption.org,
2020. [Online]. Available: https://homomorphicencryption.org/wp-
content/uploads/2020/12/wahc20 demo christian.pdf

[20] A. A. Badawi, B. Veeravalli, C. F. Mun, and K. M. M.
Aung, “High-Performance FV Somewhat Homomorphic Encryption
on GPUs: An Implementation using CUDA,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol.
2018, no. 2, p. 70–95, May 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/875

[21] A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and Performance Evaluation of RNS Vari-
ants of the BFV Homomorphic Encryption Scheme,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 2, pp. 941–956, 2021.

[22] W. Wang, Z. Chen, and X. Huang, “Accelerating leveled fully homomor-
phic encryption using GPU,” in 2014 IEEE International Symposium on
Circuits and Systems (ISCAS), 2014, pp. 2800–2803.

[23] A. A. Badawi, B. Veeravalli, and K. M. Mi Aung, “Faster number
theoretic transform on graphics processors for ring learning with errors
based cryptography,” in 2018 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), 2018, pp. 26–31.

[24] Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, and E. Savaş, “Efficient
number theoretic transform implementation on GPU for homomorphic
encryption,” The Journal of Supercomputing, vol. 78, no. 2, pp.
2840–2872, 2022. [Online]. Available: https://doi.org/10.1007/s11227-
021-03980-5

[25] A. Ş. Özcan and E. Savaş, “Heongpu: a gpu-based fully homomorphic
encryption library 1.0,” Cryptology ePrint Archive, 2024.

[26] E. R. Türkoğlu, A. Ş. Özcan, C. Ayduman, A. C. Mert, E. Öztürk,
and E. Savaş, “An accelerated gpu library for homomorphic encryption
operations of bfv scheme,” in 2022 IEEE International Symposium on
Circuits and Systems (ISCAS), 2022, pp. 1155–1159.

[27] J. Kim, W. Choi, and J. H. Ahn, “Cheddar: A swift fully
homomorphic encryption library for cuda gpus,” 2024. [Online].
Available: https://arxiv.org/abs/2407.13055

[28] H. Yang, S. Shen, W. Dai, L. Zhou, Z. Liu, and Y. Zhao, “Phantom:
A cuda-accelerated word-wise homomorphic encryption library,” IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 5, pp.
4895–4906, 2024.

[29] R. Agrawal, L. Bu, and M. A. Kinsy, “Fast Arithmetic Hardware
Library For RLWE-Based Homomorphic Encryption,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2020, pp. 206–206.

[30] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An Architecture
for Computing on Encrypted Data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1295–1309.
[Online]. Available: https://doi.org/10.1145/3373376.3378523

[31] S. Sinha Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Ver-
bauwhede, “HEPCloud: An FPGA-Based Multicore Processor for FV
Somewhat Homomorphic Function Evaluation,” IEEE Transactions on
Computers, vol. 67, no. 11, pp. 1637–1650, 2018.

[32] O. Papadakis, M. Papadimitriou, A. Stratikopoulos, M. Xekalaki,
J. Fumero, N. Foutris, and C. Kotselidis, “Towards gpu accelerated
fhe computations,” in 2024 IEEE International Conference on Cyber
Security and Resilience (CSR), 2024, pp. 694–699.

[33] D. Harvey, “Faster arithmetic for number-
theoretic transforms,” Journal of Symbolic Computa-
tion, vol. 60, pp. 113–119, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0747717113001181

[34] A. Satriawan, R. Mareta, and H. Lee, “A complete beginner guide
to the number theoretic transform (ntt),” Cryptology ePrint Archive,
Report 2024/585, 2024, available at https://eprint.iacr.org/2024/585.pdf,
last accessed: 9 March 2025.

